

ELETOUCH

SYSTEM USER'S GUIDE

$\mathbf{0 0}$	V01.00	$28 / 06 / 2022$	
REV.	SOFTWARE	DATE	T.M. Checked and Approved.

1-INDEX 2
2 - INTRODUCTION 5
3 - GENERAL CHARACTERISTICS 6
3.1 - ELETOUCH system General Specifications 6
3.2 - Description of the Main Operation Phases 7
3.2.1 - Automatic Service 7
3.2.2 - Reset Operation 8
3.2.3 - Inspection Operation 8
3.2.4 - Manual Control Service 9
3.2.5 - Releveling 9
3.2.6 - Automatic Return to Floor 9
3.2.7 - Emergency Operation 10
3.2.8 - VIP Call Operation 10
3.2.9 - Fire-Fighter Operation EN81-72 / EN81-73 11
3.2.10 - Home Lift Operation 12
3.3 - Diagnostics and Programming 13
3.3.1 - Main Menu 14
3.3.2 - Diagnostics 15
3.3.3 - Manual mode. 15
3.3.4 - Counters 15
3.3.5 - Access 16
3.3.6 - Functions 18
3.3.7 - Settings 18
3.3.8 - Test 19
3.3.9 - Shaft 20
3.3.10 - Drive TKL 20
3.4-Wi-Fi Module 21
3.4.1 - How to connect 21
3.4.2 - Software update 24
4 - BOARDS CONFIGURATIONS 25
4.1 - Parallel Car Connection or standalone (no extensions) 25
4.1.1 - Serial commands for drive 26
4.1.2 - Parallel commands for drive 28
4.2-Serial Car Connection 30
4.2.1 - Serial car with max 14 stops in DC or max 8 stops in FC 31
4.2.2 - Serial Car plus ELEXP call extension boards 33
4.2.3 - Serial shaft for landing calls management 37
5 - INPUTS AND OUTPUTS SIGNALS 38
5.1-Input Signals 38
5.2 - Input Signals only for Serial Car connection 40
5.3 - Output Signals 41
5.4 - Output Signals only for Serial Car connection 42
5.5 - Connections details 43
5.5.1 - Positioning and Releveling 43
5.5.2 - Safety Chain 47
5.5.3 - Automatic Door Control 48
5.5.4 - Star-delta start for Hydraulic drives 49
5.5.5 - Stand by for energy saving 49
5.5.6 - Soft stop for Hydraulic drives 50
5.6 - Programmable Outputs 51
6 - ADVANCED FUNCTIONS 52
6.1-Multiplex Operation 52
6.1.1 - Example of Connections for Triplex Operation 53
6.2-Selective Door Opening 54
6.2.1 - APB Operation 54
6.2.2 - Special APB operation (A.P.B SX) 55
6.2.3 - Collective operations 55
6.2.4 - Down Collective 55
6.2.5 - Full Collective 57
6.3 - ELEXP As Display Driver 59
6.3.1 - ELEXP as Decoder for 7 Segments Display 59
6.3.2 - ELEXP as Decoder for 1 Input Per Floor Display 60
6.3.3 - ELEXP as an external landing display 61
7 - STANDALONE BOARD CONFIGURATION 62
7.1 - TKL drive with serial CAN commands 62
7.1.1 - EN81-20 not active 62
7.1.2 - EN81-20 active 63
7.2 - Drive with parallel commands 65
8 - EXAMPLES 67
8.1 - Parallel Commands for Asynchronous Drive 68
8.2 - Parallel Commands for Synchronous Drive (only drive connections) 72
8.3 - Serial CAN Commands for Synchronous Drive Contactorless 73
8.4-Serial Car with parallel commands for Synchronous Drive 76
9 - APPENDIX 81
9.1-Warning messages 81
9.2 - Alarm Codes 81
9.3 - Functions 84
9.4 - Electrical Specification 88
9.4.1 - General specifications 88
9.4.2 - Power Supply considerations 89
9.4.3 - ELETOUCH, ELECB I/O 89
9.4.4 - ELEXP I/O 89
9.4.5 - LED Indicators 90
9.5 - Boards Layout 91
9.5.1 - ELETOUCH 91
9.5.2 - ELECB 92
9.5.3 - ELEXP 93
9.6 - CAN Bus 94
9.6.1 - Connection to CAN1 Bus 94
9.6.2 - Board Address 94
9.6.3 - CAN2 Bus for drive TKL connection 95
9.6.4 - Troubleshooting 95
CONFORMITY DECLARATION 97

2-INTRODUCTION

ELETOUCH is a control board system for lift operation, designed and produced by SMS.
ELETOUCH system consists of different boards:

- ELETOUCH (main board)

Expansion boards:

- ELECAR
- ELEFLOOR
- ELECB
- ELEXP

Boards are connected together by CAN BUS and different configurations are possible, depending from the number of floors, the type of operation, the type of doors and the type of inverter.
The maximun supported number of floors is 32.
ELETOUCH is the main board and it controls all aspects of the lift operation, it has a 4,3" touchscreen display in order to modify parameters and settings.
This board has to be installed in the Control Panel.
Car and Control Panel are connected through serial CAN Bus with the ELECB board or the ELECAR board that communicate signals from shaft and car, if it is in use the VVVF TKL drive also the inverter is connected to ELETOUCH with a dedicated CAN bus.
ELECAR needs a dedicated wires set because it uses quick coupling connectors.
ELEFLOOR is a small board (also called "Floor node") that has the function of managing calls at one floor.
Each ELEFLOOR manages one floor car entrance, so ELEFLOOR boards are connected in series along the shaft depending from the lift configuration. They communicate with ELETOUCH through serial CAN Bus.
ELECB works as an extension for signals from car, ELEXP is an extension board for extra calls.
Following tables show maximum stops number in case of serial commands for drive, all other cases are presented further in this manual.

Serial connection ELETOUCH + ELECB (or ELECAR) boards		
Operation	ELEXP	Max. Stops
APB	0	8
Down Collective	0	12
	2	24
	4	32
Full Collective	0	8
	2	15
	3	21
	5	27
	6	32

Parallel connection ELETOUCH board		
Operation	ELEXP	Max. Stops
Home Lift	0	5
APB	0	8
Down	0	8
	1	14
	2	20
	3	26
	4	32
	0	6
	1	10
	2	14
	3	18
	4	22
	4	2
	6	26
	7	30

A further configuration for ELETOUCH system is Multiplex operation, available both for serial and parallel connection.
In case of Multiplex operation, two or more lifts work together to optimize traffic, it's necessary a ELECAR board or a ELECB board for each car. ELETOUCH manages Duplex, Triplex and Quadruplex operation. Max stops number changes for different configuration (i.e. parallel commands to the drive).

3 - GENERAL CHARACTERISTICS

3.1 - ELETOUCH system General Specifications

Application Software on board of the micro-controller, can be upgraded via USB with a PC.
Lift configuration and fault diagnostics through a 4, $3^{\prime \prime}$ touchscreen display on ELETOUCH board or through wireless connection.
Parameters are stored permanently on E2PROM memory, even in absence of suplly voltage.
Operating temperature: $\quad 0^{\circ} \mathrm{C} \div 50^{\circ} \mathrm{C}$

ELETOUCH system manages the following types of installation:

- Drives
- Traction Lift - AC 1 speed
- AC 2 speeds
- VVVF (OPEN/CLOSED loop)
- Hydraulic Lift - Direct Starting
- Soft Starter Starting (with optional Soft Stop)
- Star-Delta Starting
- HYDROVERT

- Door Types

- Manual
- Semiautomatic (automatic car door and manual landing doors)
- Automatic
- Open or Closed Door Parking
- 1 Entrance or 2 Entrances with Serial car connection.
- Operations
- Automatic Reset at Top or Bottom Floor at Start Up
- Inspection
- Manual Control (for testing and adjustments)
- Releveling
- Automatic Return at Selected Floor
- Emergency
- VIP call
- Fire-Fighters operation EN81-72 or EN81-73
- Car Positioning System
- Monostable or Bistable Magnetic Switches

- CONTROLS AND PROTECTIONS

- Motor Thermal Protection via Thermistors
- Maximum Travel Time Alarm (separate for High Speed and Low Speed)
- Standards and Directives
- See CONFORMITY DECLARATION

3.2 - Description of the Main Operation Phases

ELETOUCH manages lift operation in different conditions that can occur during service:

- Automatic Service
- Reset Operation
- Inspection Operation
- Releveling
- Automatic Return to Floor
- Emergency Operation
- VIP Call Operation
- Fire-Fighter Operation EN81-72 / EN81-73
- Home Lift Operation

3.2.1 - Automatic Service

This is the regular service of the system.
It completely manages the operating logic of the lift, which can be: Automatic Push Button (APB), Down Collective, Full Collective or Home Lift.
At starting, the board checks, via the RC input, that none of the contactors involved in car travel is stuck.
The starting sequence is then initiated by activating the closing of any automatic doors. Door closing is allowed only if all reopening devices (photocell, safety edge, door opening button) are not activated.
The board is informed when doors are closed by the closing of the car door contact (safety chain input SC4); there is no input for the door closing limit switch, which must be connected, if present, in series with the closing contactor coil.
When doors are closed, with a small adjustable delay to allow the complete mechanical closing (see function F52), the CAM output (only if present, see 5.6 - Programmable Outputs) is enabled to activate any retiring cam; subsequently, after the landing door locked contact closing (safety chain input SC5), the actual starting is commanded and, except for special cases, it always is in high speed, with the activation of the outputs Up UP or Down DN, and High Speed HS at the same time.
The lift slows down by activating the Low Speed output LS and de-activating High Speed output HS.
The stop at floor takes place by opening LS. The opening of UP/DN may be simultaneous with LS (for 2speeds or hydraulic systems), or it can be appropriately delayed for systems with VVVF drive.
The delay can be programmed through an internal timer F17.
If operation type is VVVF TKL (TKL drive) speed and direction commands are given through CAN messages.
In case of EPC application (TKL drive and F31 function set as "EPC") speeds and direction are managed by the drive. EPC is a particular application possible with VVVF TKL drive that uses the engine encoder and a one-magnet-per-floor shaft installation, ELETOCUH communicates with the drive using the CAN bus. (for further information see EPC user's guide).
When motor contactors are switched off, if the car is in the door zone, so if at least one of the two switches USS and DSS is engaged, automatic doors opening is executed.

3.2.2 - Reset Operation

The reset operation is carried out automatically by bringing the car to an end floor every time the supply voltage is restored or when returning to normal operation, after inspection operation or after some alarm has tripped (such as the maximum travel time or motor protection with thermistors, etc.).
During reset, the position of the car is not defined, therefore at this stage on display appears:

Reset is carried out in different ways, depending on the position of the car and the drive type:

- Car outside the bottom floor slowdown area:
the car starts in down direction at high speed and stops when the switch DLS opens (1 speed lift) or slows down when DLS opens and stops with the opening of USS and DSS (for all the other types of drives).
- Car in the bottom floor slowdown area but not at floor level:
- 1 or 2 speed lift systems:
- Hydraulic system or with VVVF drive:
the car starts moving up at high speed and stops when switch ULS opens (1 -speed lift) or slows down when ULS opens and stops when USS and DSS switches are engaged (2 speed lift).
the car starts moving down at low speed and stops at bottom floor when USS and DSS switches are engaged.

When the car stops at the end floor and opens the doors, the car position is reset.
Even during Automatic Service, every time the car reaches an end floor, it is always forced to slow down and the current car position is updated.
In case of EPC application reset operation is managed in a different way:

- Car outside the bottom floor slowdown area:

The car starts moving down at low speed and stops at bottom floor when USS and DSS switches are engaged.

- Car in the bottom floor slowdown area but not at floor level:

the car starts moving up and when it gets outside DLS zone it stops then starts moving down untill it reaches USS and DSS (the floor level).

3.2.3-Inspection Operation

During the inspection operation, the maintenance worker on car roof controls its movement in hold to run mode (with permanent pressure of the push-buttons).
The board detects the status of the inspection switch via the input ISQ (ELETOUCH) or ISC (ELECB) (ISQ / ISC = OFF \rightarrow inspection service active) and controls the movement direction when the relative inspection push-buttons are activated.
Inspection run can be programmed at high or low speed, if the high speed is set and the motor drive is by VVVF, it is always commanded a medium speed level anyway.
In inspection mode the elevator stops on ULS, DLS limit switches if parameter F61 = YES.
Disabling Inspection Operation, the system returns in Automatic Service after a Reset Operation.

3.2.4 - Manual Control Service

In the manual control service, the maintenance worker can control the movement of the car from the control panel, while normal calls and the opening of the doors are disabled.
The service is activated by selecting on the display the menu "Manual mode", with car stopped at floor level.

If the safety chain is closed, the keys \uparrow and \downarrow control (up and down respectively) car starting, which moves at High Speed to the next floor.
If the button opposite to the direction of travel of the car is pressed (e.g. key \downarrow with car moving up), the lift stops immediately.
To return to automatic operation, you must press the Menu key, then exit main menu by pressing the Monitor key.
NOTE: if function F31: Select. Type is set as "EPC" (so EPC application is active) the manual control service has a different working mode. See the dedicated EPC manual.

3.2.5-Releveling

It is the operation that allows the car to return within the stop zone, both in up and down direction.
Provide a Safety Circuit (CS) in the Control Panel that bypasses the Safety Chain Door Contacts when the car is located within the door zone, and enables the releveling operation with the doors open by activating REL input. The board enables the releveling if the car has stopped for at least 3 seconds, it is positioned between the door zone, and the REL input is active.

In this condition, if the car moves below USS, keeping DSS engaged, the UP (Run Up) command is activated whereas if the car rises above DSS, keeping USS engaged, the DN (Run Down) command is activated.
The movement is controlled at Low Speed if the drive is F04: 2 SPEEDS or HYDRAULIC.
If the drive type is set to VVVF, a different level of speed HS + LS is commanded: that speed must be programmed correctly on the VVVF itself.

For more information on how to connect the Safety Circuit with ELETOUCH board see 5.5.1 - Positioning and Releveling .
Releveling operation is disabled in Inspection and Emergency operation and also when the safety input SC3 is open, but it remains active during out of service because of the memorized opening of the overtravel switch (safety chain input SC2), on the condition that the overtravel switch has closed in the meantime.

3.2.6 - Automatic Return to Floor

The car return to a floor is controlled when the car has no command active, after a programmable time F28 (maximum 15 minutes); such control is different for Traction lifts (1 speed, 2 speed or VVVF), or Hydraulic.

For Traction systems, automatic return is executed only if enabled by F13, at the floor programmed by F14.
For Hydraulic systems, car return is always executed and the return floor is the bottom floor.
The automatic return is only activated during normal function; when the car stops at the programmed return floor, the doors do not open.

3.2.7 - Emergency Operation

Emergency operation brings the car at floor when the mains voltage turns off; the operation is activated when the emergency input ROP closes, and Function F36-Emergency Floor defines the operation mode (See 9.3 - Functions)
a) F36 = Next Floor - Recommended setting for traction lifts 5 seconds after activating ROP, the board commands the car to go down at low speed.
The car stops at the first stop zone (i.e. when USS and DSS are both engaged), the automatic doors open and when fully open no other operation are executed.
b) F36 = Bottom floor - Recommended setting for hydraulic lifts

5 seconds after activating ROP, the car goes down at high speed to the bottom floor. On arriving at the down limit switch DLS it slows and stops at the floor, the automatic doors open and any further operation is prevented.
In both cases, when the ROP input returns to OFF, the system performs a Reset Operation and returns to service.
Programmable output EME (only in serial shaft configuration) is turned ON during all the emergency operation; for automatic or semiautomatic doors, after reaching the destination floor and opening the doors, this output switches OFF. See 5.6-Programmable Outputs
NOTE: if function F31: Select. Type is set as "EPC" (so EPC application is active) the emergency operation is managed by the TKL drive. See dedicated EPC manual.

3.2.8-VIP Call Operation

The VIP call floor is provided with a key switch (VIC input). In case of ELETOUCH board in standalone configuration (no extension boards present) and F59: EN81:20 set as "No", VIP call operation is not enabled. See 7-STANDALONE BOARD CONFIGURATION

When the key is inserted VIC = ON, all commands and the existing calls are cancelled, and it is no longer possible to enable other commands.
The car reaches as fast as possible the programmable VIP call floor F15:
a) if the car is stopped, it immediately moves to the VIP call floor.
b) if the car is moving in the same direction as that required by VIP call, it keeps on moving until reaching the VIP call floor.
c) if the car is running in the opposite direction to that requested by VIP call, it slows down and stops at the first floor reached, without opening the doors and, after 2 seconds, it starts moving in the direction of the VIP call.
When the car reaches the floor, if the VIC input stays ON, only car calls can be used and one at a time: in this way, the preferential user can reach the desired floors without the lift being called by another person.
During this operation, the lift parks with doors open.
The normal operation of the lift is restored when the key is removed and the VIC input turns OFF.

3.2.9 - Fire-Fighter Operation EN81-72 / EN81-73

ELETOUCH supports Fire-fighter Operation in two operation modes, selectable through F44 parameter:

- EN81-73, Behavior of lifts in the event of fire (applies to all lift systems)
- EN81-72, Fire fighters lifts (special lifts designed for Fire fighters rescue)

If None is selected, fire-fighter operation inputs are ignored.
Both operations provide a first phase, indicated in the Standards as Phase 1, in which the system brings the car to a programmable floor and opens the doors.
In particular:
a) if the car is still, it immediately leaves towards the fire-fighter floor.
b) if the car is running in the programmed fire-fighter floor direction, it continues the run until it reaches the fire-fighter floor.
c) if the car is running in the opposite direction, it slows down and stops at the first floor it encounters, and without opening the doors it starts again for the fire-fighter floor.
If the lift is built-up in compliance to EN81-72 Standards, there is a second phase, called Phase 2, in which the fire-fighters may move the car under their own exclusive control.
For more detailed information, please refer to the Standards.

For Fire-Fighter Operation management the following inputs are involved:

- On ELETOUCH board

NOTE: In case of ELETOUCH board in standalone configuration (no extension boards present) and F59: EN81-20 set as "No" Fire-Figther operation EN81-72 cannot be activated, while Fire-Figther operation EN81-73 can be activated in any case. See 7-STANDALONE BOARD CONFIGURATION

FO - Fire-Fighter Operation Activation Contact

It can be a key switch at the fire-fighter floor, or the contact of an automatic fire detection system. Input status must be ON with firefighter operation Not Active (Normally Closed contact). When the input turns OFF, the fire-fighter operation is activated, bringing the car at the floor defined by Function F45 FireFighters Floor 1.

EKF - Key Switch External To The Car

Activates Phase 2 of fire-fighter operation, type EN81-72, to allow firefighters to move the car towards a designated floor.
As defined in point 5.8 .8 g) of the Standards, if the key is removed when the car is at a different floor than the designated one, it closes the doors and goes to the designated floor.
Input status must be OFF with Phase 2 Not Active (Normally Open contact).

VIC - Additional External Control

Brings the car to the designated fire-fighter floor, with lift compliant to EN81-72, after the designated floor has first been reached, then left for an operation controlled by a fire-fighter in the car.
This option is described at point 5.8.2 of the Standards.
Input status must be OFF with Non Active operation (Normally Open contact).

- On ELECB board

IKF - Key Switch In The Car
Activates Phase 2 of fire-fighter operation type EN81-72, to allow firefighters to move the car towards a designated floor.
As defined in points 5.8 .8 g - and h) of the Standards, it has priority compared to the external switch, and if the key is removed when the car is at a different floor than the designated one, it closes the doors and remains still.
Input status must be OFF with Phase 2 Not Active (Normally Open contact).

IPA - Key Switch At Floor

Used as request for Fire-Fighter Operation, with arrival of the car at the floor defined by Function F46 FireFighter Floor 2.
Input status must be OFF to activate firefighter operation (Normally Closed contact).

Moreover:

ODB - Door Opening Push Button

Operates in Phase 1 and in Phase 2 of the EN81-72 operation for opening of the car doors, as indicated in points 5.8 .7 b - and 5.8 .8 e) of the Standards.
Also it can be activated at the end of Phase 1 of the EN81-73 operation as door opening push button, in the countries where car parking with doors open is not permitted, as indicated in point 5.3.5 of the Standards. Programming F47 Door Closing Phase 1 to Yes, after 20 seconds from arrival of the car to the designated floor, the doors close automatically and can be re-opened by pressing the ODB push button. If the operation is type EN81-72 or if the F47 value is set on No, this function is not active and at the end of Phase 1 the doors remain open.
Input status must be ON in case of Non Activated push button, as for the normal operation (Normally Closed contact).
In case of return of the activation inputs to normal conditions, the system can return to normal operation only if it has been brought back to the firefighter floor from which the operation started (Point 5.8 .8 m of the Standards).

F45-F46

Function F45 is the designated Fire-Fighters floor n. 1, activated by the FO input, prior compared to IPA, which is instead relative to the F46 function, designated fire-fighters floor n. 2.
The programmable value in F45 and F46 goes from 0 to the top floor, but 0 defines the "not leaving" of the car during Phase 1, meaning the opening of the doors directly at the floor in which the lift is stopped.
This means that if you want to bring the lift to floor 0 , actually you need to set for example F45 $=1$.
More generally, when the lift needs to be brought to a specific floor, set this value at the floor number plus 1 .

3.2.10 - Home Lift Operation

This operation is for managing commands on the load support and landing calls according to EN81-41 regulations.
The buttons located on the platform, which are used to control the movement from the platform, are depending upon "hold to run".

The landing call buttons, which are used to control the movement from the floors, are not "hold to run", the call is memorized like APB Operation.
Calls cannot be registered from floors if the platform is not at a defined floor.

3.3 - Diagnostics and Programming

ELETOUCH board has a 4,3" touchscreen display.

During the operation the display shows a "Monitor" screen which contains some information on the status of the system:

- The Floor at which the car is:
the displayed floor number depends on the main floor setting (F02): this is normally displayed as 00, the upper floors from 01 up, while the lower floors as $-1,-2$, etc. During reset is shown $-\cdots-\cdots$.
By setting F54 it is possible to change the main floor. (See 9.3-Functions)
- The state of the lift,for example:
- Normal operation AUTO
- Manual service control MAN
- Reset RES
- Inspection
- Emergency
- Direction and Speed level
- Doors status
- Other information INS EME

HS, LS, Up, Dn, ZERO, Stop
Doors open, Opening, Closed, Closing
Leveling Up/Down

The display has a 30 minutes timeout starting from the last touch on the screen, when this timeout expires the LCD turns off to reduce power consumption: to turn it on again it is just necessary to touch the screen in any place.

3.3.1 - Main Menu

By pressing the "Menu" button in Monitor screen you will access main menu.

To access all submenus (except Diagnostics) it is necessary a numerical Access Code (a number between 0 and 99999999).
SMS supplies the ELETOUCH boards programmed with Access Code $\mathbf{= 0} \mathbf{0}$, the user can modify this password (see 3.3.5 - Access)
To insert the code use the keyboard that appears on screen:

By pressing
 , if the code is correct you will enter selected menu, otherwise you can return to menu by pressing "Menu" button. The access is allowed for 30 minutes, after that you have to enter again the password. During free access, when you go back to monitor screen, the ELECT Wi-Fi network is activated so you can manage board functions from a mobile device (smartphone, PC); see 3.4-Wi-Fi Module.

3.3.2 - Diagnostics

In Diagnostics is displayed alarms list. To scroll the list press and
 To reset the list press "Delete all" or press "Menu" to go back to main menu. Alarm codes are reported in 9.2 - Alarm Codes.

3.3.3 - Manual mode

Enter Manual Control Service, see 3.2.4 - Manual Control Service.

3.3.4 - Counters

In Counters some useful statistics are displayed: Up and Down Travels, Number of door openings, number of door closing and Up and Down Leveling..
To reset counters press "Reset", or press "Menu" to go back to main menu.

- Selecting A01: Access Code 1 it is possible to modify the access code, like in the following screens:

By pressing "Access" the operation is cancelled, otherwise to change the password you have to digit the new numerical code then press \qquad

- Selecting A02: Language it is possible to choose the language (Italian, English, Spanish, French or Arabic (partial))

- Selecting A03: Protection it is possible to activate the access protection with a USB key (optional service - ELEKEY USB key needed). This setting allows to access menu Counters, Access, Functions, Settings, Test, Shaft, Drive TKL by inserting a USB key called ELEKEY (to be ordered separately) instead of digiting the password. Once you have changed the setting as "ON" the board asks you to insert the USB key which is recognized by ELETOUCH and you will get free access to menus for 30 minutes. As you go back to the monitor screen, the ELECT Wi-Fi network is activated so you can manage board functions from a mobile device (smartphone, PC); see 3.4 - Wi-Fi Module. Access is allowed for 30 minutes, after that it is necessary to insert again the USB key to enter protected menus.

- Selecting A04: Access Code 2 it is possible to modify the access code 2 (asked by the board after three times of wrong password 1 insertions), the change password 2 screen is identical to change password 1 screen.
- Selecting A05: Date setting it is possible to modify date.
- Selecting A06: Time setting it is possible to modify time.
- Selecting A07: Lift ID it is possible to choose a number between 0 and 9 to identify the lift. This number is useful in case of multiplex operation to distinguish ELETOUCH boards controlling different cars, in particular their Wi-Fi networks (called SMS-Lift0, SMS-Lift1, SMS-Lift2 ...).

3.3.6 - Functions

In Functions menu it is possible to modify lift configuration, for details see 9.3 - Functions

3.3.7-Settings

In "Settings" menu it is possible to configure programable I/Os. Regarding outputs, each pin can be configured as follows:

In order to move through pages in this screen you have to do a "Swipe" to the right to go on or swipe to the left to go back to previous page.
NOTE: Outputs can be configured ONLY in Serial Shaft configuration (F51: Extension == Car\&Shaft), using ELEFLOOR boards.

3.3.8 - Test

In "Test" menu it is possible to test all I/Os present on board ELETOUCH. Before you continue to the output test be sure that all connectors of the board (except for the power supply) are disconnected!

In order to move through pages in this screen you have to do a "Swipe" to the right to go on or swipe to the left to go back to previous page.

3.3.9 - Shaft

In "Shaft" menu it is possible to perform the floor node acquisition (ELEFLOOR boards) in case of lift configured with a serial shaft (function F51: Extension = Car\&Shaft).

Depending on the control panel position (bottom or top floor) and so on the order of ELEFLOOR in the series you have to choose:
$>$ "Top ---> Bottom" if the control panel is installed at top floor or higher, so the first ELEFLOOR in the series is that at top floor;
$>$ "Bottom $--->$ Top" if the control panel is installed at bottom floor or lower, so the first ELEFLOOR in the series is that at bottom floor.
By pressing "Confirm" the acquisition starts (for details see the "Serial shaft" dedicated manual).

3.3.10 - Drive TKL

In "Drive TKL" menu it is possible to modify some VVVF TKL Inverter parameters (only if F04: Drive Type is set as VVVF TKL). In "Regulation" submenu it is possible to manage some parameters that define inverter's speed profile.

3.4 - Wi-Fi Module

ELETOUCH board can be configured also with a Web Application that needs a Wi-Fi connection and an Internet browser. The user can modify functions, settings, inverter configuration and see diagnostics.
More details can be found in "WebApp ELETOUCH Guide" manual.
It is necessary only a mobile device (Notebook or smartphone, with any operating system) that can be connected to a Wi -Fi network. ELETOUCH board has a Wi-Fi module that provides an access point, after connection it is possible to access the Web Application with any Internet browser. Following instructions explain how to access and use the Web Application.

ATTENTION: do not connect to ELETOUCH WiFi if someone is using the lift or if someone is using the onboard LCD to change any parameter!

3.4.1 - How to connect

First of all you have to get free access like explained in 3.3.1- Main Menu then go back to monitor screen. The led named WI will be ON to indicate that Wi-Fi is active.
Connect with your device to the access point through Wi-Fi; be sure not to be too distant from the board in order to receive a good signal level.

1. Activate wireless connection on your mobile device then connect to the access point named "SMS-Lift-x" (x is the lift ID you can modify in "Access" menu, A07 setting):

Insert password (access code 1, like in A01 setting. See 3.3.5-Access). The access point requires an 8digits password so if the access code 1 is a number made of less than 8 digits you have to add as many zeroes as it is necessary to reach this length.

Example: Access Code $1=$ ' 1234 ' \rightarrow Password Wi-Fi = ‘00001234'

2. Open your favourite Internet browser and in the address bar insert "192. 168.4.1":

8:38 \%		
(3)	192.168.4.1	\times
	ELETOUCH by SMS 192.168.4.1	К
Q	192	

Open the web page

3. Press "MENU" button: the first page is the main menu.

Now it possible to navigate through all submenus and manage all functions and settings like you do with the onboard ELETOUCH LCD. The user has total control over functions so be sure to use the Web Application only if nobody is using the lift!
4. If you are using an Android device you can add an icon on your smartphone's home screen to reach faster the Web Application once you have connected to the access point. From the Web Application homepage (192.168.4.1), click on "Settings" icon, then click on "Add to home screen...", finally press "Add".

On your smartphone you will see a similar icon:

5. If you are using an Apple device, connect to ELETOUCH Wi-Fi and in the address bar of "Safari" (or any other Internet browser) digit "192.168.4.1" then click on the icon:

Copy	
Add to Reading List	O-
Add Bookmark	Q
Add to Favorites	Add to Home Screen

3.4.2 - Software update

ELETOUCH Web Application gives the possibility of updating the Wi-Fi module firmware.
Access the Web Application then press "MENU", finally click on "Update WebApp SW":

Click on "Choose file...", then select the .bin file containing the software you want to upload in the ELETOUCH Wi-Fi module. Finally click on "Update" and wait the end of the process.

NOTE: When the progress bar is 100% the upload is finished but you have to wait at least one minute to let the ESP32 Wi-Fi module complete all update and restart operations.

4 - BOARDS CONFIGURATIONS

4.1 - Parallel Car Connection or standalone (no extensions)

ELETOUCH board can work also without any extension, in the standalone mode (F51 = No), but the maximum number of stops that can be configured depends on additional functionalities needed by the user (for example EN81-20, parallel drive connection...).
You can add ELEXP boards to increase ELETOUCH maximum number of stops, like shown in following table, up to 32 stops (F51 = Only Calls).

Parallel Car Connection (Standalone) ELETOUCH board		
Operation	ELEXP	Max. Stops
Home Lift	0	5
APB	0	8
Down Collective	0	8
	1	14
	2	20
	3	26
	4	32
Full Collective	0	6
	1	10
	2	14
	3	18
	4	22
	5	26
	6	30
	7	32

Extension boards are connected to CAN Bus 1, each ELEXP must be configured with the correct address using dipswitch SW2: see for details 9.6.2-Board Address
In following pages are reported tables showing how to connect Landing Calls and Car Calls and how to correctly set addresses for every combination of ELETOUCH and ELEXP, depending on the operation type chosen with F03 function and the top floor number F01.
Each Car or Landing Call terminal is both a board input for a pushbutton and output for a signal, that assumes two different meaning:

- Car Incoming at n-th floor in APB operation
- Call Registered in case of Collective operation Come

As shown in Figure 1 only one wire is required for the connection of a call button and the related signal.
See 9.4 - Electrical Specification for further electrical information.
For Down Collective operation, Landing Calls above the main floor are Down Calls, Up Calls otherwise. Set the main floor with function F02.
For every configuration of F03, the maximum number of stops supported is reported, and also the board address for every expansion board.

Figure 1

4.1.1 - Serial commands for drive

APB Max 8 stops		
$\stackrel{\text { M3 }}{\text { ELETOUCH }}$	U0	K+C/L 00
	U1	K+C/L 01
	U2	K+C/L 02
	U3	K+C/L 03
	U4	K+C/L 04
	U5	K+C/L 05
	U6	K+C/L 06
	U7	K+C/L 07
$\stackrel{\text { M4 }}{\text { ELETOUCH }}$	D0	LP 00
	D1	LP 01
	D2	LP 02
	D3	LP 03
	D4	LP 04
	D5	LP 05
	D6	LP 06
	D7	LP 07

Homelift Max 5 stops		
M3 ELETOUCH	U0	K/L 00
	U1	K/L 01
	U2	K/L 02
	U3	K/L 03
	U4	K/L 04
	U5	C/L 00
	U6	C/L 01
	U7	C/L 02
M4 ELETOUCH	D0	C/L 03
	D1	C/L 04
	D2	LP 00
	D3	LP 01
	D4	LP 02
	D5	LP 03
	D6	LP 04
	D7	X

Down Collective Max 8 stops		
M3 ELETOUCH	U0	K/L 00
	U1	K/L 01
	U2	K/L 02
	U3	K/L 03
	U4	K/L 04
	U5	K/L 05
	U6	K/L 06
	U7	K/L 07
M4 ELETOUCH	D0	C/L 00
	D1	C/L 01
	D2	C/L 02
	D3	C/L 03
	D4	C/L 04
	D5	C/L 05
	D6	C/L 06
	D7	C/L 07

Full Collective Max 6 stops		
M3 ELETOUCH	U0	U/L 00
	U1	U/L 01
	U2	U/L 02
	U3	U/L 03
	U4	U/L 04
	U5	D/L 01
	U6	D/L 02
	U7	D/L 03
M4 ELETOUCH	D0	D/L 04
	D1	D/L 05
	D2	K/L 00
	D3	K/L 01
	D4	K/L 02
	D5	K/L 03
	D6	K/L 04
	D7	K/L 05

$\mathrm{C} / \mathrm{L} n$	Landing calls
$\mathrm{K} / \mathrm{L} n$	Car calls
$\mathrm{K}+\mathrm{C} / \mathrm{L} \mathrm{n}$	Landing and Car calls in APB operation
$\mathrm{D} / \mathrm{L} \mathrm{n}$	Down calls in Full Collective operation
$\mathrm{U} / \mathrm{L} \mathrm{n}$	Up calls in Full Collective operation
$\mathrm{LP} n$	Car position (1 signal for each floor)

ATTENTION: Maximum number of stops may change depending on additional functionalities needed, see 7-STANDALONE BOARD CONFIGURATION

For F03 = Down Collective and F03 = Full Collective only 32 stops configuration is shown. Add as many ELEXP as needed to support the correct number of stops.

For example for a 20 stops lift in DC operation only 2 ELEXP are needed, one programmed with address 0 and the other with address 1 . For 20 stops in DC operation 4 ELEXP are needed with addresses $0,1,2$ and 3 .

NOTE: In case of more than 16 stops it is necessary an extra ELEXP board to be used as external display, refer to 6.3.3-ELEXP as an external landing display for configuration.

4.1.2 - Parallel commands for drive

APB Max 6 stops		
M3 ELETOUCH	U00	K+C/L 00
	U01	K+C/L 01
	U02	K+C/L 02
	U03	K+C/L 03
	U04	K+C/L 04
	U05	K+C/L 05
	U06	x
	U07	x
M4 ELETOUCH	D00	LP 00
	D01	LP 01
	D02	LP 02
	D03	LP 03
	D04	LP 04
	D05	LP 05
	D06	x
	D07	X

Homelift Max 4 stops		
M3 ELETOUCH	U00	K/L 00
	U01	K/L 01
	U02	K/L 02
	U03	K/L 03
	U04	C/L 00
	U05	C/L 01
	U06	x
	U07	X
M4 ELETOUCH	D00	C/L 02
	D01	C/L 03
	D02	LP 00
	D03	LP 01
	D04	LP 02
	D05	LP 03
	D06	x
	D07	X

Down Collective Max 6 stops		
M3 ELETOUCH	U00	K/L 00
	U01	K/L 01
	U02	K/L 02
	U03	K/L 03
	U04	K/L 04
	U05	K/L 05
	U06	x
	U07	x
M4 ELETOUCH	D00	C/LOO
	D01	C/L01
	D02	C/L02
	D03	C/L 03
	D04	C/L 04
	D05	C/L 05
	D06	x
	D07	X

Full Collective Max 4 stops		
M3 ELETOUCH	U00	U/L 00
	U01	U/L 01
	U02	U/L 02
	U03	D/L 01
	U04	D/L 02
	U05	D/L 03
	U06	x
	U07	X
M4 ELETOUCH	D00	X
	D01	x
	D02	K/L 00
	D03	K/L 01
	D04	K/L 02
	D05	K/L 03
	D06	x
	D07	X

$\mathrm{C} / \mathrm{L} n$	Landing calls
$\mathrm{K} / \mathrm{L} n$	Car calls
$\mathrm{K}+\mathrm{C} / \mathrm{L} n$	Landing and Car calls in APB operation
$\mathrm{D} / \mathrm{L} \mathrm{n}$	Down calls in Full Collective operation
$\mathrm{U} / \mathrm{L} n$	Up calls in Full Collective operation
$\mathrm{LP} n$	Car position (1 signal for each floor)

Drive with parallel commands
DC + 5 ELEXP max 32 Stops

Drive with parallel commands								
DC + 5 ELEXP max 32 Stops								
$\begin{gathered} \text { M3 } \\ \text { ELETOUCH } \end{gathered}$	U0	K/L 00		C00	K/L 12		C00	K/L 24
	U1	K/L 01		C01	K/L 13		C01	K/L 25
	U2	K/L 02		C02	K/L 14		C02	K/L 26
	U3	K/L 03		C03	K/L 15		C03	K/L 27
	U4	K/L 04		C04	K/L 16		C04	K/L 28
	U5	K/L 05		C05	K/L 17		C05	K/L 29
	U6	X		C06	C/L 12		C06	C/L 24
	U7	X		C07	C/L 13		C07	C/L 25
$\begin{gathered} \text { M4 } \\ \text { ELETOUCH } \end{gathered}$	D0	C/L 00		C08	C/L 14		C08	C/L 26
	D1	C/L 01		C09	C/L 15		C09	C/L 27
	D2	C/L 02		C10	C/L 16		C10	C/L 28
	D3	C/L 03		C11	C/L 17		C11	C/L 29
	D4	C/L 04		C00	K/L 18	M3 ELEXP Addr $=4$	C00	K/L 30
	D5	C/L 05		C01	K/L 19		C01	K/L 31
	D6	X		C02	K/L 20		C02	X
	D7	X		C03	K/L 21		C03	X
M3 ELEXP$\text { Addr }=0$	C00	K/L 06		C04	K/L 22		C04	X
	C01	K/L 07		C05	K/L 23		C05	X
	C02	K/L 08		C06	C/L 18		C06	C/L 30
	C03	K/L 09		C07	C/L 19		C07	C/L 31
	C04	K/L 10		C08	C/L 20		C08	X
	C05	K/L 11		C09	C/L 21		C09	X
	C06	C/L 06		C10	C/L 22		C10	X
	C07	C/L 07		C11	C/L 23		C11	X
	C08	C/L 08						
	C09	C/L 09						
	C10	C/L 10						
	C11	C/L 11						

Drive with parallel commands
FC + 7 ELEXP max 32 stops

FC + 7 ELEXP max 32 stops								
M3 ELETOUCH	U0	U/L 00	$\begin{gathered} \text { M3 } \\ \text { ELEXP } \\ \text { Addr }=1 \end{gathered}$	C00	K/L 08		C00	K/L 20
	U1	U/L 01		C01	K/L 09		C01	K/L 21
	U2	U/L 02		C02	K/L 10		C02	K/L 22
	U3	D/L 01		C03	K/L 11		C03	K/L 23
	U4	D/L 02		C04	U/L 07		C04	U/L 19
	U5	D/L 03		C05	U/L 08		C05	U/L 20
	U6	X		C06	U/L 09		C06	U/L 21
	U7	X		C07	U/L 10		C07	U/L 22
M4 ELETOUCH	D0	X		C08	D/L 08		C08	D/L 20
	D1	X		C09	D/L 09		C09	D/L 21
	D2	K/L 00		C10	D/L 10		C10	D/L 22
	D3	K/L 01		C11	D/L 11		C11	D/L 23
	D4	K/L 02	$\begin{array}{\|c\|} \hline \text { M3 } \\ \text { ELEXP } \\ \text { Addr }=2 \end{array}$	C00	K/L 12	$\begin{gathered} \text { M3 } \\ \text { ELEXP } \\ \text { Addr }=5 \end{gathered}$	C00	K/L 24
	D5	K/L 03		C01	K/L 13		C01	K/L 25
	D6	X		C02	K/L 14		C02	K/L 26
	D7	X		C03	K/L 15		C03	K/L 27
M3 ELEXP Addr $=0$	C00	K/L 04		C04	U/L 11		C04	U/L 23
	C01	K/L 05		C05	U/L 12		C05	U/L 24
	C02	K/L 06		C06	U/L 13		C06	U/L 25
	C03	K/L 07		C07	U/L 14		C07	U/L 26
	C04	U/L 03		C08	D/L 12		C08	D/L 24
	C05	U/L 04		C09	D/L 13		C09	D/L 25
	C06	U/L 05		C10	D/L 14		C10	D/L 26
	C07	U/L 06		C11	D/L 15		C11	D/L 27
	C08	D/L 04	$\begin{gathered} \text { M3 } \\ \text { ELEXP } \\ \text { Addr }=3 \end{gathered}$	C00	K/L 16	$\begin{gathered} \text { M3 } \\ \text { ELEXP } \\ \text { Addr }=6 \end{gathered}$	C00	K/L 28
	C09	D/L 05		C01	K/L 17		C01	K/L 29
	C10	D/L 06		C02	K/L 18		C02	K/L 30
	C11	D/L 07		C03	K/L 19		C03	K/L 31
				C04	U/L 15		C04	U/L 27
				C05	U/L 16		C05	U/L 28
				C06	U/L 17		C06	U/L 29
				C07	U/L 18		C07	U/L 30
				C08	D/L 16		C08	D/L 28
				C09	D/L 17		C09	D/L 29
ration				C10	D/L 18		C10	D/L 30
eration				C11	D/L 19		C11	D/L 31

 configuration.

4.2-Serial Car Connection

With Serial Car connection ELETOUCH board is in the Control Panel, and ELECB (or the ELECAR) in the Car Box (set F51 to Car \& Calls).
The table below shows all the possible configuration depending on the operation mode.

Serial connection ELETOUCH + ELEECB (or ELECAR) boards		
Operation	ELEXP	Max. Stops
APB	0	8
	0	12
	2	24
	4	32
Full Collective	0	8
	2	15
	3	21
	5	27
	6	32

Table 2

The user can add ELEXP boards to support installation with number of stops higher than 12, as shown on the table, up to 32 floors.
The boards are connected via CAN Bus, and every ELEXP board should be programmed with the correct address by operating the SW2 dipswitch: see 9.6.2-Board Address for more information.

In the next pages there are some tables that shows how to connect Landing Calls and Car Calls for every combination of ELETOUCH and ELEXP, depending on F03 parameter.

Each Car or Landing Call terminal is both a board input for a pushbutton and output for a signal, that assumes two different meaning:

- Car Incoming at n-th floor in APB operation
- Call Registered in case of Collective operation

As shown in Figure 2, only one wire is required for the connection of a call button and the related signal.

See 9.4 - Electrical Specification for further electrical information.

For Down Collective operation, Landing Calls above the main floor are Down Calls, Up Calls otherwise. Set the main floor with function F02.
For every configuration of F 03 , the maximum number of stops supported is reported, and also the board address for every expansion board.

Figure 2

4.2.1 - Serial car with max 14 stops in DC or max 8 stops in FC

Calls configuration change for Down Collective operation in case of number of stops less or equal to 14 and for Full Collective operation in case of number of stops less or equal to 8.

Down Collective

For DC operation D6 and D7 outputs are respectively used as NUS-Up Arrow and NDS-Down Arrow for landing display, OS, EC, LEV and EME outputs are used as floor number display (up to 15 stops).
Note: in case of 13 or 14 stops D6 and D7 are still used as UP/DOWN Arrows.

Down Collective + 1 ELECB max 12 stops		
M3 ELETOUCH	U0	C/L 00
	U1	C/L 01
	U2	C/L 02
	U3	C/L 03
	U4	C/L 04
	U5	C/L 05
	U6	C/L 06
	U7	C/L 07
M4 ELETOUCH	D0	C/L 08
	D1	C/L 09
	D2	C/L 10
	D3	C/L 11
	D4	X
	D5	X
	D6	
	D7	
M3-M4 ELECB Address = 0	C00	K/L 00
	C01	K/L 01
	C02	K/L 02
	C03	K/L 03
	C04	K/L 04
	C05	K/L 05
	C06	K/L 06
	C07	K/L 07
	C08	K/L 08
	C09	K/L 09
	C10	K/L 10
	C11	K/L 11

$\mathrm{C} / \mathrm{L} n$	Landing calls
$\mathrm{K} / \mathrm{L} \mathrm{n}$	Car calls
$\mathrm{K}+\mathrm{C} / \mathrm{L} \mathrm{n}$	Landing and Car calls in APB operation
$\mathrm{D} / \mathrm{L} n$	Down calls in Full Collective operation
$\mathrm{U} / \mathrm{L} \mathrm{n}$	Up calls in Full Collective operation

Signals to external landing display

M7 ELETOUCH	OS	PB0
	EC	PB1
	LEV	PB2
	EME	PB3

In case of number of stops greater than14, the landing floor display has to be managed by a dedicated ELEXP board. Refer to 6.3.3 - ELEXP as an external landing display for configuration.

Full Collective

For FC operation U7 and D0 outputs are respectively used as NUS-Up Arrow and NDS-Down Arrow for landing display, OS, EC, LEV and EME outputs are used as floor number display (up to 15 stops).

Full Collective + 1 ELECB max 8 stops		
M3 ELETOUCH	U0	U/L 00
	U1	U/L 01
	U2	U/L 02
	U3	U/L 03
	U4	U/L 04
	U5	U/L 05
	U6	U/L 06
	U7	
M4 ELETOUCH	D0	
	D1	D/L 01
	D2	D/L 02
	D3	D/L 03
	D4	D/L 04
	D5	D/L 05
	D6	D/L 06
	D7	D/L 07
M3-M4 ELECB Address = 0	C00	K/L 00
	C01	K/L 01
	C02	K/L 02
	C03	K/L 03
	C04	K/L 04
	C05	K/L 05
	C06	K/L 06
	C07	K/L 07
	C08	K/L 08
	C09	X
	C10	X
	C11	X

$\mathrm{C} / \mathrm{L} n$	Landing calls
$\mathrm{K} / \mathrm{L} n$	Car calls
$\mathrm{K}+\mathrm{C} / \mathrm{L} n$	Landing and Car calls in APB operation
$\mathrm{D} / \mathrm{L} n$	Down calls in Full Collective operation
$\mathrm{U} / \mathrm{L} \mathrm{n}$	Up calls in Full Collective operation

Signals to external landing display

M7 ELETOUCH	OS	PB0
	EC	PB1
	LEV	PB2
	EME	PB3

In case of number of stops greater than 8, the landing floor display has to be managed by a dedicated ELEXP board. Refer to 6.3.3 - ELEXP as an external landing display for configuration.

4.2.2 - Serial Car plus ELEXP call extension boards

In following configurations the landing floors external display has to be controlled by an additional ELEXP board, see 6.3.3-ELEXP as an external landing display

DC + 1 ELECB + 2 ELEXP max 24 stops					
M3 ELETOUCH	U0	C/L 00	M3 ELEXP Addr $=1$	C00	K/L 12
	U1	C/L 01		C01	K/L 13
	U2	C/L 02		C02	K/L 14
	U3	C/L 03		C03	K/L 15
	U4	C/L 04		C04	K/L 16
	U5	C/L 05		C05	K/L 17
	U6	C/L 06		C06	K/L 18
	U7	C/L 07		C07	K/L 19
M4 ELETOUCH	D0	C/L 08		C08	K/L 20
	D1	C/L 09		C09	K/L 21
	D2	C/L 10		C10	K/L 22
	D3	C/L 11		C11	K/L 23
	D4	C/L 12	M3 ELEXP Addr $=2$	C00	C/L 16
	D5	C/L 13		C01	C/L 17
	D6	C/L 14		C02	C/L 18
	D7	C/L 15		C03	C/L 19
M3-M4 ELECB$\text { Addr = } 0$	C0	K/L 00		C04	C/L 20
	C1	K/L 01		C05	C/L 21
	C2	K/L 02		C06	C/L 22
	C3	K/L 03		C07	C/L 23
	C4	K/L 04		C08	X
	C5	K/L 05		C09	X
	C6	K/L 06		C10	X
	C7	K/L 07		C11	X
	C8	K/L 08			
	C9	K/L 09			
	C10	K/L 10			
	C11	K/L 11			
C/L n	Landing calls				
K/L n	Car calls				
K+C/L n	Landing and Car calls in APB operation				
D/L n	Down calls in Full Collective operation				
U/L n	Up calls in Full Collective operation				
LP n	Car position (1 signal for each floor)				

DC+ 1 ELECB + 4 ELEXP 32					
M3 ELETOUCH	U0	C/L 00	M3 ELEXP Addr $=2$	C00	K/L 24
	U1	C/L 01		C01	K/L 25
	U2	C/L 02		C02	K/L 26
	U3	C/L 03		C03	K/L 27
	U4	C/L 04		C04	K/L 28
	U5	C/L 05		C05	K/L 29
	U6	C/L 06		C06	K/L 30
	U7	C/L 07		C07	K/L 31
M4 ELETOUCH	D0	C/L 08		C08	X
	D1	C/L 09		C09	X
	D2	C/L 10		C10	X
	D3	C/L 11		C11	X
	D4	C/L 12	$\begin{gathered} \text { M3 ELEXP } \\ \text { Addr }=3 \end{gathered}$	C00	C/L 16
	D5	C/L 13		C01	C/L 17
	D6	C/L 14		C02	C/L 18
	D7	C/L 15		C03	C/L 19
$\begin{gathered} \text { M3-M4 ELECB } \\ \text { Addr }=0 \end{gathered}$	C0	K/L 00		C04	C/L 20
	C1	K/L 01		C05	C/L 21
	C2	K/L 02		C06	C/L 22
	C3	K/L 03		C07	C/L 23
	C4	K/L 04		C08	C/L 24
	C5	K/L 05		C09	C/L 25
	C6	K/L 06		C10	C/L 26
	C7	K/L 07		C11	C/L 27
	C8	K/L 08	$\begin{gathered} \text { M3 ELEXP } \\ \text { Addr }=4 \end{gathered}$	C00	C/L 28
	C9	K/L 09		C01	C/L 29
	C10	K/L 10		C02	C/L 30
	C11	K/L 11		C03	C/L 31
M3 ELEXP Addr $=1$	C00	K/L 12		C04	X
	C01	K/L 13		C05	X
	C02	K/L 14		C06	X
	C03	K/L 15		C07	X
	C04	K/L 16		C08	X
	C05	K/L 17		C09	X
	C06	K/L 18		C10	X
	C07	K/L 19		C11	X
	C08	K/L 20			
	C09	K/L 21			
	C10	K/L 22			
	C11	K/L 23			

Full Collective +1 ELECB +2 ELEXP max 15 stops					
M3 ELETOUCH	U0	U/L 00	$\begin{gathered} \text { M3 ELEXP } \\ \text { Addr }=2 \end{gathered}$	C00	U/L 08
	U1	U/L 01		C01	U/L 09
	U2	U/L 02		C02	U/L 10
	U3	U/L 03		C03	U/L 11
	U4	U/L 04		C04	U/L 12
	U5	U/L 05		C05	U/L 13
	U6	U/L 06		C06	D/L 09
	U7	U/L 07		C07	D/L 10
M4 ELETOUCH	D0	D/L 01		C08	D/L 11
	D1	D/L 02		C09	D/L 12
	D2	D/L 03		C10	D/L 13
	D3	D/L 04		C11	D/L 14
	D4	D/L 05	$\begin{gathered} \text { M3 ELEXP } \\ \text { Addr }=1 \end{gathered}$	C00	K/L 12
	D5	D/L 06		C01	K/L 13
	D6	D/L 07		C02	K/L 14
	D7	D/L 08		C03	X
$\begin{gathered} \text { M3-M4 ELECB } \\ \text { Addr }=0 \end{gathered}$	C0	K/L 00		C04	X
	C1	K/L 01		C05	X
	C2	K/L 02		C06	X
	C3	K/L 03		C07	X
	C4	K/L 04		C08	X
	C5	K/L 05		C09	X
	C6	K/L 06		C10	X
	C7	K/L 07		C11	X
	C8	K/L 08			
	C9	K/L 09			
	C10	K/L 10			
	C11	K/L 11			

Full Collective +1 ELECB +3 ELEXP max 21 stops								
M3 ELETOUCH	U0	U/L 00	M3 ELEXPAddr $=2$	C00	U/L 08	M3 ELEXP Addr $=3$	C00	D/L 09
	U1	U/L 01		C01	U/L 09		C01	D/L 10
	U2	U/L 02		C02	U/L 10		C02	D/L 11
	U3	U/L 03		C03	U/L 11		C03	D/L 12
	U4	U/L 04		C04	U/L 12		C04	D/L 13
	U5	U/L 05		C05	U/L 13		C05	D/L 14
	U6	U/L 06		C06	U/L 14		C06	D/L 15
	U7	U/L 07		C07	U/L 15		C07	D/L 16
M4 ELETOUCH	D0	D/L 01		C08	U/L 16		C08	D/L 17
	D1	D/L 02		C09	U/L 17		C09	D/L 18
	D2	D/L 03		C10	U/L 18		C10	D/L 19
	D3	D/L 04		C11	U/L 19		C11	D/L 20
	D4	D/L 05	$\begin{gathered} \text { M3 ELEXP } \\ \text { Addr }=1 \end{gathered}$	C00	K/L 12			
	D5	D/L 06		C01	K/L 13			
	D6	D/L 07		C02	K/L 14			
	D7	D/L 08		C03	K/L 15			
$\begin{gathered} \text { M3-M4 ELECB } \\ \text { Addr }=0 \end{gathered}$	C0	K/L 00		C04	K/L 16			
	C1	K/L 01		C05	K/L 17			
	C2	K/L 02		C06	K/L 18			
	C3	K/L 03		C07	K/L 19			
	C4	K/L 04		C08	K/L 20			
	C5	K/L 05		C09	X			
	C6	K/L 06		C10	X			
	C7	K/L 07		C11	X			
	C8	K/L 08						
	C9	K/L 09						
	C10	K/L 10						
	C11	K/L 11			CLL	Landing calls		
					KLn			
					K+C/L n	Landing and Car calls in APB operation		
					DLn	Down calls in Full Collective operation Up calls in Full Collective operation		
					ULL n			
					LP n	Up calls in Full Collective operation Car position (1 signal for each floor)		

Full Collective + 1 ELECB +6 ELEXP max 32 stops											
M3 ELETOUCH	U0	U/L 00	M3 ELEXP Addr $=3$	C00	U/L 08	M3 ELEXP Addr $=4$	C00	U/L 20	M3 ELEXP Addr $=5$	C00	D/L 08
	U1	U/L 01		C01	U/L 09		C01	U/L 21		C01	D/L 09
	U2	U/L 02		C02	U/L 10		C02	U/L 22		C02	D/L 10
	U3	U/L 03		C03	U/L 11		C03	U/L 23		C03	D/L 11
	U4	U/L 04		C04	U/L 12		C04	U/L 24		C04	D/L 12
	U5	U/L 05		C05	U/L 13		C05	U/L 25		C05	D/L 13
	U6	U/L 06		C06	U/L 14		C06	U/L 26		C06	D/L 14
	U7	U/L 07		C07	U/L 15		C07	U/L 27		C07	D/L 15
M4 ELETOUCH	D0	X		C08	U/L 16		C08	U/L 28		C08	D/L 16
	D1	D/L 01		C09	U/L 17		C09	U/L 29		C09	D/L 17
	D2	D/L 02		C10	U/L 18		C10	U/L 30		C10	D/L 18
	D3	D/L 03		C11	U/L 19		C11	X		C11	D/L 19
	D4	D/L 04	M3 ELEXP Addr $=1$	C00	K/L 12	M3 ELEXP Addr $=2$	C00	K/L 24	M3 ELEXP Addr = 6	C00	D/L 20
	D5	D/L 05		C01	K/L 13		C01	K/L 25		C01	D/L 21
	D6	D/L 06		C02	K/L 14		C02	K/L 26		C02	D/L 22
	D7	D/L 07		C03	K/L 15		C03	K/L 27		C03	D/L 23
M3-M4 ELECB Addr $=0$	C0	K/L 00		C04	K/L 16		C04	K/L 28		C04	D/L 24
	C1	K/L 01		C05	K/L 17		C05	K/L 29		C05	D/L 25
	C2	K/L 02		C06	K/L 18		C06	K/L 30		C06	D/L 26
	C3	K/L 03		C07	K/L 19		C07	K/L 31		C07	D/L 27
	C4	K/L 04		C08	K/L 20		C08	X		C08	D/L 28
	C5	K/L 05		C09	K/L 21		C09	X		C09	D/L 29
	C6	K/L 06		C10	K/L 22		C10	X		C10	D/L 30
	C7	K/L 07		C11	K/L 23		C11	X		C11	D/L 31
	C8	K/L 08									
	C9	K/L 09									
	C10	K/L 10									
	C11	K/L 11									

$C / L n$	Landing calls
$K / L n$	Car calls
$K+C / L n$	Landing and Car calls in APB operation
$D / L n$	Down calls in Full Collective operation
$U / L n$	Up calls in Full Collective operation
$L P n$	Car position (1 signal for each floor)

4.2.3 - Serial shaft for landing calls management

It is possible to manage landing calls using extra boards named ELEFLOOR (see dedicated manual for installation and use).
In this configuration landing calls and signals are managed through CAN communication between ELEFLOOR boards at each floor and each selective car entrance and ELETOUCH board in control panel.
To activate this functionality it is necessary to set function F51: Extension = "Car\&Shaft", then follow the procedure described in 3.3.9-Shaft. In following scheme is shown an example of serial shaft configuration. Each ELEFLOOR represents a node of the chain of communication that runs in the shaft, in the example the control panel is above top floor and there are two selective stops.

Top to bottom Acquisition selective, example 6 stops + 2 selective

5 - INPUTS AND OUTPUTS SIGNALS

5.1 - Input Signals

- ELETOUCH

M6	EA1	NC	External Alarm 1	The opening of this input causes the OUT OF SERVICE with immediate stop of the car. It can be connected, for example at the contact of the MAINS PHASE CONTROL device or at FAULT contact of the VVVF. When the input closes again after an opening, the lift automatically returns to service with a reset operation	E16
	EA2	NC	External Alarm2	The opening of this input causes the car to stop at the end of the current travel. It can be connected for example to the contact of the oil thermostat	E17
	RC	C	Run Contactors Control	Connect to auxiliary contacts of contactors that control car movement that if stuck, could lead to dangerous situations. It is possible to set the input to be active during RUN (NO contacts in parallel) or active with car STOPPED (NC contacts in series)	F37, F38
	REL	NO	Releveling Enable	Connect to an auxiliary contact of the SAFETY CIRCUIT which enables releveling with open doors and that provides the door contact by-pass	Magnets position for installation with releveling by Safety Circuit
	ROP	NO	Emergency Operation Enable	Activates Emergency Operation.	3.2.7 - Emergency Operation
	FO	NC	Fire-Fighters Operation Enable	Fire-Fighters Operation	
	EKF	NO	Full Car (collective)Occupied (APB) Fire-Fighters Operation Key Switch	In standalone configuration this is the Full Car input in collective operations, Occupied in APB operation.(only if the lift is not in Fire-Fighters Operation mode) In serial car connection this is the Fire-Fighter EN81-72 key input	$\begin{gathered} \frac{3.2 .9-\text { Fire- }}{\text { Fighter }} \\ \text { Operation } \\ \frac{\text { EN81-72 } /}{\text { EN81-73 }} \\ \text { F44, F45, F46 } \end{gathered}$
	OCl	NO	OCl	Car Overload Switch (load > 110\% loading capacity), contact CLOSED with car overload.	$\frac{\text { Automatic }}{\text { Service }}$
	TH1 TH2	NC	Motor Thermistors	Connect to a PTC thermistor: if the thermistor resistance increases an alarm occurs. Make a connection between TH1 and TH2 if not used.	F12, F33, E15

M8	SCC	NC	Safety Chain Common	Voltage reference of Safety Circuits. Grounded on Control Panel.	$\frac{\text { 5.5.2 - Safety }}{\text { Chain }}$
	SC1	NC	Safety Chain Optoisolated Inputs	Safety Chain Beginning. Downstream of the Operation Automatic Valve.	
	SC2	NC		1st Section. Downstream of the Overtravel switch	
	SC3	NC		2nd Section. Downstream of various safety switches, of the Normal Service / Inspection switch, and the Landing Door Closed Contacts (only for Semiautomatic doors)	
	SC4	NC		3rd Section. Downstream of the Car Door Contact	
	SC5	NC		4th Section. Donwstream of the Landing Door Locked Contacts	

ATTENTION: Destination of use of I/Os can be different depending on board configuration if it is in standalone parallel configuration and on additional needed functionalities. For detail see 7- STANDALONE BOARD CONFIGURATION.

```
= Mandatory wiring
= If not used leave open
= If not used connect to OV
P = Only in Parallel Car connection
S = Only in Serial Car connection
NC = Normally Closed input
NO = Normally Open input
C = Configurable input (NC or NO)
- = Not used
```


5.2 - Input Signals only for Serial Car connection

- ELECB

M3	ODB	S	NC	ODB	Door Opening Button. If the lift is at floor opens the door in automatic and semiautomatic door modes. Open Door Button (ODB) mode can be set also as NO in 3.3.7-Settings	-
	CDB	S	NC	CDB	Door Quick Closing Button (Active only in Collective operation). If there are registered calls forces the doors to close in automatic and semiautomatic door modes.	-
M5	IPA	S	NC	Fire-Fighters Operation Enable	Fire-Fighter Inputs	$\frac{3.2 .9-\text { Fire- }}{\text { Fighter }}$OperationEN81-72EN81-73
	IKF	S	NO	Fire-Fighters car key switch		
	IPB	S	-	-	-	
M8	IEC	S	NO	EC	EC - Occupied Car (load > 1%) in Automatic Push Button operation in Collective Operation if it goes OFF at floor, cancels all the registered car calls	
	IFC	S	NO	FC	Full Car (load \approx maximum capacity) in Collective operation	
	IOC	S	NO	OCI	Car Overload Switch (load > 110\% loading capacity), contact CLOSED with car overload.	
M9	PE1	S	NC	PE1	Photocell and safety edge contact. Side 1	$\frac{\text { Auto } \frac{\text { 5.5.3- }}{\text { matic Door }}}{\text { Control }}$
M10	SE1	S	NC	DOL1	Door Open Limit switch. Side 1	
	DCL2		NO	DCL1	Door Close Limit switch. Side 1 contact 1	
	DCL1		NO	DCL1	Door Close Limit switch. Side 1 contact 2	
	TH4		NC	TH	Door motor thermistors side 1 contact 1	
	TH3		NC	TH	Door motor thermistors side 1 contact 1	
M12	SE2	S	NC	DOL2	Door Open Limit switch. Side 2	
	DCL4		NO	DCL2	Door Close Limit switch. Side 2 contact 1	
	DCL3		NO	DCL2	Door Close Limit switch. Side 2 contact 2	
	TH6		NC	TH	Door motor thermistors side 2 contact 1	
	TH5		NC	TH	Door motor thermistors side 2 contact 2	
M13	PE2	S	NC	PE2	Photocell and safety edge contact. Side 2	
M14	ODB	S	NO	ODB	Door Opening Button Duplicate	
	ISC	S	NC	Inspection Box contact	Inspection box at the car top	$\frac{\text { Inspection }}{\text { Operation }}$
	IDC	S	NO	Inspection Down Button		
	IUC	S	NO	Inspection Up Button		

5.3-Output Signals

ELETOUCH

M7	+24	*	24 V voltage	24 V aux terminal	-
	OS	T	Generic Output	Generic output, different use depending of lift configuration	
	EC	T	Generic Output	Generic output, different use depending of lift configuration	
	LEV	T	Generic Output	Generic output, different use depending of lift configuration	
	EME	T	Generic Output	Generic output, different use depending of lift configuration	
	LS	T	Low Speed Control	Motor speed control (only if F04:Drive Type is different from VVVF TKL)	F04
	MS	T	Medium Speed Control		
	HS	T	High Speed Control		
	DN	T	Down Control	Motor direction control (only if F04:Drive Type is different from VVVF TKL)	
	UP	T	Up Control		

```
X = Unconnected
T = Transistor Output
O = Optoisolated Output
R = Relay Output
* = Voltage reference
= Programmable Output (only for serial shaft configuration)
    = Mandatory Connection
```

Output signals OS, EC, LEV and EME on M7 connector can be programmed only if the lift has serial shaft connection (F51 = Car\&Shaft). See 5.6 - Programmable Outputs.

Motor Speed/Direction Controls have different function in some configurations (i.e. standalone with serial commands for drive).

5.4-Output Signals only for Serial Car connection

- ELECB

M11	OB1	R	LC	Car Light/Fan control	
M10	CD1	*	Common Door Control		$\begin{aligned} & \frac{5.5 .3-}{\text { Automatic }} \\ & \text { Cooor } \\ & \text { Control } \end{aligned}$
	DC1	R	Door Closing Control	Door control side 1	
	D01	R	Door Opening Control		
M12	CD2	*	Common Door Control	Door control side 2	
	DC2	R	Door Closing Control		
	DO2	R	Door Opening Control		
M6	CB4	T	Display B4	Display Control outputs	F55
	CB3	T	Display B3		
	CB2	T	Display B2		
	CB1	T	Display B1		
	CBO	T	Display B0		
	GNG	T	GNG	Acoustic signal of car incoming	
	NUS	T	NUS	Direction Up Signal (APB operation), Next Leaving Up Signal (Collective operation)	
	NDS	T	NDS	Direction Down Signal (APB operation), Next Leaving Down Signal (Collective	
	OPF	T	OCO	Car overload acoustic signal	
M7	OPA				
	OPC	T			
	OPD	T			
	OPE	T			
	OV	*	OV voltage	OV aux terminal	

```
X = Unconnected
T = Transistor Output
O = Optoisolated Output
R = Relay Output
* = Voltage reference
= Programmable Output
- = Mandatory Connection
```


5.5-Connections details

5.5.1 - Positioning and Releveling

ELETOUCH board manages car position through 4 magnetic switches sensed through 4 inputs:

1. USS - Up Stop Switch (Downward Slowdown)
2. DSS - Down Stop Switch (Upward Slowdown)
3. ULS - Top Floor Limit Switch
4. DLS - Bottom Floor Limit Switch

USS, DSS switches are used to slow down the car and stop it.
The contacts of USS and DSS can be of NO or NC type, with appropriate programming (Default NC).

Figure 3
If necessary, for example due to the speed of the system or to the distance between the floors, the magnets that control the slowdown can "cross", i.e. the magnet, which controls the slowdown to the next floor may be positioned immediately after the magnets of floor zone (stop/door zone). No programming is required for the board in this case, as software adjusts automatically.
It is however required to provide a distance of a few centimetres between the floor zone magnets and the slow down on, to allow the correct reading of the input (this distance depends on the system speed); usually 5 cm are sufficient, and therefore the minimum distance between floors allowed is equal to the slowdown space + door unlock space +5 cm .
ULS, DLS switches are used for reset operation and to slow the car at the upper and lower floors.
The switches ULS and DLS must be of type NC and driven at end floors by a magnet with a length equal to slowdown distance minus 2 cm , as shown in the figure below.

Figure 4

Magnets position for installation without releveling

If releveling is not needed, the magnets placement scheme to follow is the one in Figure $\mathbf{5}$.

USS - Up Stop Switch (Downward Slowdown)
DSS - Down Stop Switch (Upward Slowdown)
ULS - Top Floor Limit Switch
DLS - Bottom Floor Limit Switch

$A=150 \mathrm{~mm}$
$\mathrm{D}=20 \mathrm{~mm}$
$R=100 \mathrm{~mm}$

X1 = Upward Slowdown Space

X2 = Upward Stop Space

Y1 = Downward Slowdown Space

Y2 = Downward Stop Space

Figure 5

Magnets position for installation with releveling by Safety Circuit

For installation with releveling by Safety Circuit, for example hydraulic lifts, the magnets scheme to follow is the one in Figure 6.

In this case there is another magnet switch IZS that functions as a Door zone switch: this enables the Safety Circuit in the correct zone, so the board can command the releveling correctly. This switch must have a NO contact (closed at floor).

USS - Up Stop Switch (Downward Slowdown)
DSS - Down Stop Switch (Upward Slowdown)
ULS - Top Floor Limit Switch
DLS - Bottom Floor Limit Switch

IZS - Releveling zone switch
$A=150 \mathrm{~mm}$
$D=20 \mathrm{~mm}$
$R=100 \mathrm{~mm}$

X1 = Upward Slowdown Space

X2 = Upward Stop Space

Y1 = Downward Slowdown Space

Y2 = Downward Stop Space

Figure 6

Safety Circuit connection for releveling

Figure 7-Concept schematic of safety module connection

When the lift is not in High Speed and within the Door Zone, Safety Module activates ELETOUCH board REL input. Note: LEV output is programmable only in case of serial shaft connection, while in case of EN81-20 active (F59:EN81-20 = Yes) the output to be used depends on the type of operation: for Down Collective or APB it is necessary to use U5, for Full Collective or Home Lift it is necessary to use D1.

Figure 8
At this point the board, if detect any changes in USS and DSS inputs, commands releveling activating the correct Direction and Speed level, and LEV output, and its relay enables the by-pass of the doors contacts.

For more information about the connection of Safety Chain see 5.5.2-Safety Chain.

5.5.2 - Safety Chain

Safety chain connection is different for every door configuration, as shown in the concept schematic in Figure 9.

Figure 9 - Concept schematic of Safety Chain
Various safety switches can include:

- Stop switch in the pit
- Overspeed Governor
- Overspeed Governor Tension Device
- Safety Gear

5.5.3 - Automatic Door Control

- Parallel Car Connection - Standalone

In case of ELETOUCH standalone door controls and related inputs signals (Door open limit, photocell...) are located in a different way depending on drive type (F04 function).
For details see 7-STANDALONE BOARD CONFIGURATION.

- Serial Car Connection

For Serial Car Connection ELECB (or ELECAR) controls automatic doors.
In this case inputs and outputs are doubled, because this board can support two car entrances.
There are two sets of outputs: CD1, DC1, DO1 (M10) for side 1, e CD2, DC2, DO2 (M12) for side 2.
Same thing for photocell and DOL inputs: PE1 (M9), SE1 (M10) for side 1, and PE2 (M13), SE2 (M12) for side 2. Connect this signals with the same logic as it would be in Parallel Car connection with ELETOUCH. For one entrances car simply do not connect any I/O for side 2 and make sure that F07:Car Entrances=1.
Regarding door motor thermistors inputs (TH3, TH4, TH5, TH6) and door close limit inputs (DCL1, DCL2, DCL3, DCL4) you have to connects properly depending on the number of car entances:

- One car entrance at side 1

In case of a single car entrance at side 1 you have to connect DCL1 and DCL2 to respective close limit contacts on door motor for side 1, while you have to connect DCL3 and DCL4 together; then you have to connect TH3 and TH4 to respective thermistor contacts on door motor for side 1, while you have to connect TH5 and TH6 together.

- One car entrance at side 2

In case of a single car entrance at side 2 you have to connect DCL3 and DCL4 to respective close limit contacts on door motor for side 2, while you have to connect DCL1 and DCL2 together; then you have to connect TH5 and TH6 to respective thermistor contacts on door motor for side 2, while you have to connect TH3 and TH4 together.

- Double car entrance, side 1 and 2

In case of double car entrance you have to connects DCL1 and DCL2 to respective close limit contacts on door motor for side 1, while you have to connect DCL3 and DCL4 to respective close limit contacts on door motor for side 2; then you have to connect TH3 and TH4 to respective thermistor contacts on door motor for side 1, while you have to connect TH5 and TH6 to respective thermistor contacts on door motor for side 2. If you do not want to use thermistors, you have to connect $\mathbf{T H} 3$ to $\mathbf{0 V}$, if you do not want to use door close limit you have to connect DCL1 to OV.

For double car doors set F07:Car Entrances=2 and F08 according to the Table 1. F08 is defined for every floor in the system, so for example F08.03 means F08 at floor 3.

Table 1 - Behaviour of ELECB board depending on F08

F08.n	
Side 1	ELECB open and close only side 1
Side 2	ELECB open and close only side 2
Simultaneous	ELECB open and close both sides simultaneously.
Selective	Every side has its own floor and car call, see also 6.2 - Selective Door Opening
None	No open or close command are activated

5.5.4 - Star-delta start for Hydraulic drives

ELETOUCH supports Star-delta Hydraulic drives only in case of serial shaft connection (F51:Extension = Car\&Shaft).
In upwards run, after a programmable delay, STD programmable output activates. This can be used to control external contactors to switch the motor connection from Star to Delta (see 5.6 - Programmable Outputs and F56:T. StarDelta).
In down run STD output is always deactivated.
This output activates in every operating mode.

5.5.5 - Stand by for energy saving

Setting F49 to a value greater than 0 activates standby mode.
Only in case of serial shaft connection (F51:Extension = Car\&Shaft) it is possible to program one of following outputs : OS, EC, LEV, EME as SBY.
The SBY output is active during normal operation (see 5.6 - Programmable Outputs)
If the car is at floor and in automatic operation, when no calls are registered for the time F49, SBY output is deactivated.
Any landing or car call activates SBY and turn the board to normal operating conditions.
This output can be used to control relays or contactors that cut the power supply for control panel auxiliary circuits, to achieve energy saving.

5.5.6 - Soft stop for Hydraulic drives

ELETOUCH board supports hydraulic drives with soft stop input only in case of serial shaft connection (F51:Extension = Car\&Shaft), by using programmable output SS (see 5.6 Programmable Outputs) as a soft stop command and F16, F34 and F57 parameters to control contactor timing.
AU output, in this case of hydraulic drive, will be used as pump engine command.
SS programmable output activates only during upwards movements, as shown in Figure 10.
At first $\mathbf{S S}$ activates with $\mathbf{A U}$ and $\mathbf{H S}$, and at stop deactivates before AU by a time defined by F57.
To set F57 correctly see hydraulic drive data sheet, because this time has to be greater than the Soft Stop time: this enables the car to stop slowly and AU contactor will not drop too early making the car do a sudden stop.
Now set F16 = F57. In this configuration the board will deactivate SS output immediately when the car reaches the destination floor.
If the car stops lower than the floor level, increase F16 to adjust the stop, but make sure that F16 > F57 always; for this situation Figure 11 shows the timing of the output signals.
For releveling upwards the board uses the same logic before, set F34 = F57 than if required adjust the stop by increasing F34.

Figure 10

Figure 11

5.6 - Programmable Outputs

ELETOUCH outputs OS EC LEV and EME located on M7 connector are programmable only in case of serial shaft connection (F51:Extension = Car\&Shaft), any terminal can be programmed to execute a specific function in Settings menu (See 3.3.7-Settings).

NUS-UP Arrow	Direction Up Signal (APB operation), Next Leaving Up Signal (Collective operation)
NDS-DN Arrow	Direction Down Signal (APB operation), Next Leaving Down Signal (Collective operation)
GONG	Acoustic signal of car incoming
CAM-Retiring CAM	Retiring CAM output
SBY-Stand by	Stand by output (see 5.5.6 - Stand by for energy saving)
LEV-Releveling	Releling operation active

*Retiring CAM output mode 1 is used on semi-automatic doors, CAM block at car door closing, release at car door fully open.

6 - ADV ANCED FUNCTIONS

6.1-Multiplex Operation

No other additional board are needed for pairing lift systems to work in Multiplex operation (up to four).
To connect the landing calls, please refer to the tables (see 4-BOARDS CONFIGURATIONS) in this Manual, depending on the configuration and the stop number, considering that the all landing calls shall be parallel connected to all the lifts in the group.

In multiplex operation landing calls push buttons must work even if it one of the lift in the group is disabled for maintenance. To achieve this behaviour:

- connect the landing call button common to all OV of ELETOUCH boards.
- connect the registered signal common to all 24E of ELETOUCH and ELEXP boards.

On every ELETOUCH set also F39, F40 and F41 and F43 according to the specific installation (see 9.3 Functions).
While F39 sets the total number of lifts, F40 specifies for every ELETOUCH an unique master address, so program a different value for every lift, 0 for the first, 1 for the second...
Also program every expansion board dipswitch (ELECB and ELEXP) according to F40, as specified in 8.6.2 Board Address.
F41 function set the behaviour for high traffic lifts; when some calls are not served for a certain time set by this parameter, the internal algorithm enables high priority for this call group.
F43 function consider the possibility that one of the lifts serves one call less than the others.
Set this lift F43 to Bottom Floor if this floor is at the bottom, and F43 to Other car Bottom in every other lift. If the missing floor is the top one, set F43 to Top Floor in this particular lift and F43 to Other car Top in every other.
6.1.1 - Example of Connections for Triplex Operation

6.2-Selective Door Opening

With Selective Door Opening for two entrances cars, at one floor two possible stops are possible, one from one side, and one from another, completely independent one from the other: it means that separate calls and commands can be recorded for that floor, which make the doors to open on side 1 or on side 2, but never simultaneously.
This mode of operation is supported only in Serial Car connection, with ELECB board (set F51 to Car \& Calls).
Selective opening can be programmed for one or more floors, by setting F07 to 2, and F08 to selective (see 5.5.3 - Automatic Door Control and 9.3-Functions).

In order to consider what configuration of ELETOUCH, ELECB and ELEXP boards is required, the total number of buttons has to be considered, namely the number of services, and not the number of floors served, considering that there are two services for every selective opening floor.
See 4.2-Serial Car Connection to choose the configuration for the desired number of services.
Landing and Car Calls are placed differently with Selective Door Opening: connect non selective calls and selective calls side 1 normally, with the same logic reported in the tables, instead connect selective calls side 2 starting from the last terminal for that configuration, and then backwards; to clarify the placement logic, in the next pages examples of some configurations are shown.

6.2.1 - APB Operation

For the APB Operation the maximum number of stops is 8 , so this means that if every floor needs selective opening (2 services), a maximum of 4 floors with a total 8 services is supported.
Connect to ELETOUCH non selective landing calls and selective landing calls for side 1, starting from forward; connect instead side 2 selective landing calls from U7 backward, connecting the button at the lowest floor to U7.
Connect to ELECB non selective Car Calls and selective Car Calls for side 1, starting from C0 forward; connect instead side 2 selective Car Calls from C11 backward, connecting the button for the lowest floor to C11.

- EXAMPLE 1

Lift with 6 stops, 2 car entrances, SELECTIVE OPENING on floors 2 and 4, No. OF SERVICES $=8$, drive with serial commands

Service Number	Landing Call Terminal	Car Call Terminal	Floor	Side
0	U0 - ELETOUCH	C0 - ELECB	0	Side 1
1	U1 - ELETOUCH	C1 - ELECB	1	Side 2
2	U2 - ELETOUCH	C2 - ELECB	2	Side 1
3	U3 - ELETOUCH	C3 - ELECB	3	Side 1
4	U4 - ELETOUCH	C4 - ELECB	4	Side 1
5	U5 - ELETOUCH	C5 - ELECB	5	Side 2
6	U6 - ELETOUCH	C10 - ELECB	4	Side 2
7	U7 - ELETOUCH	C11 - ELECB	2	Side 2

Program functions F08.01 and F08.05 as Side 2, F08.02 and F08.04 as Selective, other F08.n as Side1.

6.2.2 - Special APB operation (A.P.B SX).

This operation is working as APB operation for landing calls and down collective operation for Car calls. The maximum number of stops for this special ABP operation is the same as per Down collective operation. Use the same tables for down collective operations to determine the number of stops and connections. To have this feature, parameter F03 must be programmed as A.P.B SX, parameter F26 is used as occupied time instead of F27.

6.2.3 - Collective operations

For Collective operations (Down or Full), in case of floor with selective opening, landing calls can be registered both from side 1 and side 2 (or car calls); in such cases, on stopping, the door on the side where the first call was registered opens, after the starting time door closes, and once the doors are closed the opening of the other door is commanded.

6.2.4 - Down Collective

There is only one button at the floor and different configurations can be made; to determine what board configuration is needed, keep in consideration the total number of services and use the tables for Down Collective operation with Serial Car Connection (see tables at 4.2-Serial Car Connection).
In the following paragraphs, some possible configurations are shown as an example.

ELETOUCH + ELECB, Maximum number of SERVICES = 12

Connect to ELETOUCH non selective Landing Calls and selective Landing Calls for side 1, starting from U0 forward; connect instead side 2 selective Landing Calls from 2 from D3 backward, connecting the button at the lowest floor to D3.
Connect to ELECB non selective Car Calls and selective Car Calls for side 1, starting from C0 forward; connect instead side 2 selective Car Calls from C11 backward, connecting the button for the lowest floor to C11.

- EXAMPLE 2

Lift with 5 stops, 2 car entrances, SELECTIVE OPENING on floors 1, 2 and 3, No. OF SERVICES =8, drive with serial commands

Service Number	Landing Call Terminal	Car Call Terminal	Floor	Side
0	U0 - ELETOUCH	C0 - ELECB	0	Side 1
1	U1 - ELETOUCH	C1 - ELECB	1	Side 1
2	U2 - ELETOUCH	C2 - ELECB	2	Side 1
3	U3 - ELETOUCH	C3 - ELECB	3	Side 1
4	U4 - ELETOUCH	C4 - ELECB	4	Side 2
5	D1 - ELETOUCH	C5 - ELECB	3	Side 2
6	D2 - ELETOUCH	C10 - ELECB	2	Side 2
7	D3 - ELETOUCH	C11 - ELECB	1	Side 2

Side 1
Side 2

Program functions F08.06 as Side 2, F08.01 to F08.03 as Selective, other F08.n as Side 1.

ELETOUCH + ELECB + 2 ELEXP, Maximum number of SERVICES = 24

Connect to ELETOUCH non selective Landing Calls and selective Landing Calls for side 1 starting from U0 forward; connect instead side 2 selective Landing Calls from C07 of ELEXP (address=2) backward, connecting the button at the lowest floor to C07.

Connect non selective Car Calls and selective Car Calls for side 1, starting from C0 of ELECB (address=0) forward; connect instead side 2 selective Car Calls from C11 of ELEXP (address=1) backward, connecting the button for the lowest floor to C11.

- EXAMPLE 3

Lift with 8 stops, 2 car entrances, SELECTIVE OPENING on floors 1-6, No. OF SERVICES = 14, drive with serial commands

Service Number	Landing Call Terminal	Car Call Terminal	Floor	Side
0	U0 - ELETOUCH	C0 - ELECB (0)	0	Side 1
1	U1-ELETOUCH	C1 - ELECB (0)	1	Side 1
2	U2 - ELETOUCH	C2 - ELECB (0)	2	Side 1
3	U3-ELETOUCH	C3-ELECB (0)	3	Side 1
4	U4 - ELETOUCH	C4 - ELECB (0)	4	Side 1
5	05 - ELETOUCH	C5 - ELECB (0)	5	Side 1
6	U6-ELETOUCH	C6-ELECB (0)	6	Side 1
7	U7-ELETOUCH	C7-ELECB (0)	7	Side 1
x	DO - ELETOUCH	C8 - ELECB (0)	x	x
X	D1-ELETOUCH	C9 - ELECB (0)	x	X
x	D2 - ELETOUCH	C10-ELECB (0)	x	X
x	D3 - ELETOUCH	C11-ELECB (0)	x	x
x	D4 - ELETOUCH	C00-ELEXP (1)	x	x
x	D5 - ELETOUCH	C01-ELEXP (1)	x	x
x	D6-ELETOUCH	C02-ELEXP (1)	X	x
X	D7-ELETOUCH	C03-ELEXP (1)	x	x
X	C00-ELEXP (2)	C04-ELEXP (1)	x	x
x	C01-ELEXP (2)	C05-ELEXP (1)	x	x
8	C02-ELEXP (2)	C06-ELEXP (1)	6	Side 2
9	C03-ELEXP (2)	C07-ELEXP (1)	5	Side 2
10	C04-ELEXP (2)	C08-ELEXP (1)	4	Side 2
11	C05-ELEXP (2)	C09-ELEXP (1)	3	Side 2
12	C06-ELEXP (2)	C10-ELEXP (1)	2	Side 2
13	C07-ELEXP (2)	C11-ELEXP (1)	1	Side 2

Program functions from F08.01 to F08.06 as Selective, other F08.n as Side 1.

6.2.5 - Full Collective

There are 2 buttons for each floor and different configurations can be made; to determine what board configuration is needed, keep in consideration the total number of services and use the tables for Full Collective operation with Serial Car Connection, see 4.2-Serial Car Connection . In the following paragraphs a possible configuration is shown as an example.

ELETOUCH + ELECB + 2 ELEXP, Maximum number of SERVICES = 15

Connect to ELETOUCH non selective Up Landing Calls and selective Down Landing Calls for side 1, starting from UO forward; connect instead side 2 selective Up Landing Calls from C05 of ELEXP (address=2) backward, connecting the button at the lowest floor to C05.
Connect to ELETOUCH non selective Down Landing Calls and selective Down Landing Calls for side 1, starting from DO forward; connect instead side 2 selective Down Landing Calls from C11 of ELEXP (address=2) backward, connecting the button at the lowest floor to C11.
Connect non selective Car Calls and selective Car Calls for side 1, starting from C0 of ELECB (address=0) forward; connect instead side 2 selective Car Calls from C02 of ELEXP (address=1) backward, connecting the button for the lowest floor to C02.
EXAMPLE 4
Lift with 8 stops, 2 car entrances, SELECTIVE OPENING on floors $1-6$, No. OF SERVICES $=14$, drive with serial commands

Service Number	Landing Call Terminal	Car Call Terminal	Floor	Side	Service Number
0	U0 - ELETOUCH	x	C0-ELECB (0)	0	Side 1
1	U1-ELETOUCH	DO - ELETOUCH	C1 - ELECB (0)	1	Side 1
2	U2 - ELETOUCH	D1 - ELETOUCH	C2 - ELECB (0)	2	Side 1
3	U3-ELETOUCH	D2 - ELETOUCH	C3-ELECB (0)	3	Side 1
4	U4 - ELETOUCH	D3 - ELETOUCH	C4 - ELECB (0)	4	Side 1
5	U5 - ELETOUCH	D4 - ELETOUCH	C5 - ELECB (0)	5	Side 1
6	U6-ELETOUCH	D5 - ELETOUCH	C6-ELECB (0)	6	Side 1
7	x	D6-ELETOUCH	C7-ELECB (0)	7	Side 1
8	C00-ELEXP (2)	C06-ELEXP (2)	C9 - ELECB (0)	6	Side 2
9	C01-ELEXP (2)	C07-ELEXP (2)	C10-ELECB (0)	5	Side 2
10	C02-ELEXP (2)	C08-ELEXP (2)	C11-ELECB (0)	4	Side 2
11	C03-ELEXP (2)	C09-ELEXP (2)	C00-ELEXP (1)	3	Side 2
12	C04-ELEXP (2)	C10-ELEXP (2)	C01-ELEXP (1)	2	Side 2
13	C05-ELEXP (2)	C11-ELEXP (2)	C02-ELEXP (1)	1	Side 2

Program functions from F08.01 to F08.06 as Selective, other F08.n as Side 1.

ELETOUCH + ELECB + 6 ELEXP, Maximum number of SERVICES = 32

Connect to ELETOUCH non selective Up Landing Calls and selective Down Landing Calls for side 1, starting from U0 forward; connect instead side 2 selective Up Landing Calls from C10 of ELEXP (address=4) backward, connecting the button at the lowest floor to C10.
Connect to ELETOUCH non selective Down Landing Calls and selective Down Landing Calls for side 1, starting from D1 forward; connect instead side 2 selective Down Landing Calls from C11 of ELEXP (address=6) backward, connecting the button at the lowest floor to C11.
Connect non selective Car Calls and selective Car Calls for side 1, starting from C0 of ELECB (address=0) forward; connect instead side 2 selective Car Calls from C07 of ELEXP (address=2) backward, connecting the button for the lowest floor to C07.

EXAMPLE 5

Lift with 16 stops, 2 car entrances, SELECTIVE OPENING on floors 1-4,6,7,9-14 No. OF SERVICES = 28, drive with serial commands

Service Number	Landing Call Up Terminal	Landing Call Down Terminal	Car Call Terminal	Floor	Side
0	U0 - ELETOUCH	X	C0 - ELECB (0)	0	Side 1
1	U1-ELETOUCH	D1-ELETOUCH	C1 - ELECB (0)	1	Side 1
2	U2 - ELETOUCH	D2 - ELETOUCH	C2 - ELECB (0)	2	Side 1
3	U3-ELETOUCH	D3 - ELETOUCH	C3-ELECB (0)	3	Side 1
4	U4 - ELETOUCH	D4 - ELETOUCH	C4 - ELECB (0)	4	Side 1
5	U5 - ELETOUCH	D5 - ELETOUCH	C5-ELECB (0)	5	Side 2
6	U6-ELETOUCH	D6-ELETOUCH	C6 - ELECB (0)	6	Side 1
7	U7 - ELETOUCH	D7 - ELETOUCH	C7-ELECB (0)	7	Side 1
8	C00-ELEXP (3)	C00-ELEXP (5)	C8 - ELECB (0)	8	Side 1
9	C01-ELEXP (3)	C01-ELEXP (5)	C9 - ELECB (0)	9	Side 1
10	C02-ELEXP (3)	C02-ELEXP (5)	C10-ELECB (0)	10	Side 1
11	C03-ELEXP (3)	C03-ELEXP (5)	C11-ELECB (0)	11	Side 1
12	C04-ELEXP (3)	C04-ELEXP (5)	C00-ELEXP (1)	12	Side 1
13	C05-ELEXP (3)	C05-ELEXP (5)	C01-ELEXP (1)	13	Side 1
14	C06-ELEXP (3)	C06-ELEXP (5)	C02-ELEXP (1)	14	Side 1
15	X	C07-ELEXP (5)	C03-ELEXP (1)	15	Side 1
16	C11-ELEXP (3)	C00-ELEXP (6)	C08-ELEXP (1)	14	Side 2
17	C00-ELEXP (4)	C01-ELEXP (6)	C09-ELEXP (1)	13	Side 2
18	C01-ELEXP (4)	C02-ELEXP (6)	C10-ELEXP (1)	12	Side 2
19	C02-ELEXP (4)	C03-ELEXP (6)	C11-ELEXP (1)	11	Side 2
20	C03-ELEXP (4)	C04-ELEXP (6)	C00 - ELEXP (2)	10	Side 2
21	C04-ELEXP (4)	C05-ELEXP (6)	C01-ELEXP (2)	9	Side 2
22	C05-ELEXP (4)	C06-ELEXP (6)	C02 - ELEXP (2)	7	Side 2
23	C06-ELEXP (4)	C07-ELEXP (6)	C03-ELEXP (2)	6	Side 2
24	C07-ELEXP (4)	C08-ELEXP (6)	C04-ELEXP (2)	4	Side 2
25	C08-ELEXP (4)	C09-ELEXP (6)	C05-ELEXP (2)	3	Side 2
26	C09-ELEXP (4)	C10-ELEXP (6)	C06-ELEXP (2)	2	Side 2
27	C10-ELEXP (4)	C11-ELEXP (6)	C07-ELEXP (2)	1	Side 2

Side $1 \quad$ Side 2

Program functions from F08.01 to F08.04, from F08.06 to F08.07, from F08.09 to F08.14 as Selective, F08.05 as Side 2, other F08.n as Side 1.

6.3-ELEXP As Display Driver

ELEXP can be used as a display driver on both Serial or Parallel Car connection.
This can be achieved by setting jumpers JP3 on A and JP4 on B on ELEXP and set function F53 on ELETOUCH, according to the function desired.

6.3.1 - ELEXP as Decoder for 7 Segments Display

The ELEXP Board provides 9 outputs to control a 7 segment display, consisting of 2 digits and the minus sign for negative numbers. The tens digit can assume only the 1 value (max. number 19).
ELEXP can manage both Positive Common displays and Negative Common displays.

F53 (ELETOUCH)	$=$	7 SEG $\operatorname{ELEXP}(0)$:	$\begin{aligned} & \text { SW2-1 }=\text { OFF } \\ & \text { SW2-2 }=\text { OFF } \end{aligned}$	$\operatorname{ELEXP}(1):$	$\begin{aligned} & S W 2-1=O N \\ & S W 2-2=O F F \end{aligned}$
SW1 (${ }^{\circ} 10$ Switches)	=	All OFF All ON	Positive Common Display all the other cases		

6.3.2 - ELEXP as Decoder for 1 Input Per Floor Display

The ELEXP Board provides 12 outputs to control a display with 1 Input per floor, and Negative Common. In the same way, it's possible to control car position signals by lamps.

SETTINGS:

F53 (ELETOUCH)	$=$	1 OUT * FLOOR In this case the number of boards enabled depend on top floor number F01. If F01 ≤ 11 one board, else if F01 ≤ 23 two boards, else if F01 >23 three boards.					
SW1 (${ }^{\circ} 10$ Switches)	$=$	All ON					

If display common is connected to positive, only outputs C0...C9 should be used.

6.3.3 - ELEXP as an external landing display

The ELEXP provides 7 outputs to control a 5-digits binary display plus Up/Down Arrows.

F53 (ELETOUCH)	$=$	7 Seg.X2 In this case there is only one ELEXP board with address 0. ELEXP(0):SW2-1 = OFF SW2-2 $=$ OFF SW1 $\left(n^{\circ} 10\right.$ Switches $)$$=$

Output decoding follows F55: Decoding value.

7 - STANDALONE BOARD CONFIGURATION

In case ELETOUCH board is installed without any expansion board so it is working in standalone configuration, the functions of I/Os and the maximun possible number of stops change depending on functionalities active and the command mode of the drive. Following cases are presented.

7.1-TKL drive with serial CAN commands

In this configuration the function F04: Drive type is set as "VVVF TKL" and the drive receives direction and speed commands via CAN.

7.1.1 - EN81-20 not active

Function F59: EN81-20 is set as "No",the maximun number of stops for all type of operation is equal to that in Table 1 in 4.1 - Parallel Car Connection or standalone (no extensions) but I/Os have different functions listed in following tables:
INPUTS

Connector	IN	Old function	New function	New function acronym
M5	URI	Inspection Up Button	Open Door Button only when the lift is not in Inspection mode	ODB
	DRI	Inspection Down Button	Door Quick Closing Button only when the lift is not in Inspection mode (Active only in Collective operation).	CDB
	VIC	Activates VIP Call Operation	Door Open Limit side 1	DOL1
	ATP	Generic Input	Photocell and safety edge contact. Side 1	PE1
M6			FC - Full Car (load \approx maximum capacity) in Collective operation Only if FO input is active (lift NOT in Fire-Fighters Operation mode)	FCI
	EKF	Fire-Fighters Operation EN81-72 Key Switch	EC - Occupied Car (load > 1%) in Automatic Push Button operation Only if FO input is active (lift NOT in Fire-Fighters Operation mode)	ECI

For this particular configuration it is not possible to use VIP Call and/or activate Fire-Fighter Operation EN81-72 (it is still possible to activate Fire-Fighter Operation EN81-73)

- OUTPUTS

Connector	OUT	Old function	New function	New function acronym
M7	OS	Generic outputs	Display control 0	cBo
	EC		Display control 1	CB1
	LEV		Display control 2	CB2
	EME		Display control 3	CB3
	LS	Low Speed Control	Acoustic signal of car incoming - GONG	GNG
	MS	Medium Speed Control	Door Open Command Side 1	DO
	HS	High Speed Control	Door Close Command Side 1	DC
	DN	Down Control	Direction Down Signal (APB operation), Next Leaving Down Signal (Collective operation)	NDS
	UP	Up Control	Direction Up Signal (APB operation), Next Leaving Up Signal (Collective operation)	NUS

7.1.2 - EN81-20 active

Function F59: EN81-20 is set as "Yes", the maximum possible number of stops change for every type of operation because some call inputs (U6, U7, D6 and D7) change function, following tables show possible configurations:

APB Max 5 stops		
$\stackrel{\text { M3 }}{\text { ELETOUCH }}$	U0	K+C/L 00
	U1	K+C/L 01
	U2	K+C/L 02
	U3	K+C/L 03
	U4	K+C/L 04
	U5	X
	U6	X
	U7	X
M4 ELETOUCH	D0	X
	D1	LP 00
	D2	LP 01
	D3	LP 02
	D4	LP 03
	D5	LP 04
	D6	X
	D7	X

Homelift Max 3 stops		
$\begin{gathered} \text { M3 } \\ \text { ELETOUCH } \end{gathered}$	U0	K/L 00
	U1	K/L 01
	U2	K/L 02
	U3	C/L 00
	U4	C/L 01
	U5	C/L 02
	U6	X
	U7	X
M4 ELETOUCH	D0	X
	D1	X
	D2	LP 00
	D3	LP 01
	D4	LP 02
	D5	LP 03
	D6	X
	D7	X

Down Collective Max 5 stops		
$\stackrel{\text { M3 }}{\text { ELETOUCH }}$	U0	K/L 00
	U1	K/L 01
	U2	K/L 02
	U3	K/L 03
	U4	K/L 04
	U5	X
	U6	X
	U7	X
M4ELETOUCH	D0	X
	D1	C/L 00
	D2	C/L 01
	D3	C/L 02
	D4	C/L 03
	D5	C/L 04
	D6	X
	D7	X

Full Collective Max 4 stops		
$\begin{gathered} \text { M3 } \\ \text { ELETOUCH } \end{gathered}$	U0	U/L 00
	U1	U/L 01
	U2	U/L 02
	U3	D/L 01
	U4	D/L 02
	U5	D/L 03
	U6	X
	U7	X
M4 ELETOUCH	D0	X
	D1	X
	D2	K/L 00
	D3	K/L 01
	D4	K/L 02
	D5	K/L 03
	D6	X
	D7	X

$\mathrm{C} / \mathrm{L} n$	Landing calls
$\mathrm{K} / \mathrm{L} n$	Car calls
$\mathrm{K}+\mathrm{C} / \mathrm{L} n$	Landing and Car calls in APB operation
$\mathrm{D} / \mathrm{L} n$	Down calls in Full Collective operation
$\mathrm{U} / \mathrm{L} n$	Up calls in Full Collective operation
$\mathrm{LP} n$	Car position (1 signal for each floor)

I/Os assume following functions:
INPUTS

Connector	IN	Old function	New function	New function acronym
M3	U6	Floor call	Door Close Limit Side 1	DCL1
	U7	Floor call	Inspection from the pit activate input (EN81-20)	AIF
M4	D6	Floor call	Door Open Limit Side 1	DOL1
	D7	Floor call	Access To the Pit input (EN81-20)	ATP

Connector	IN	Old function	New function	New function acronym
M5	URI	Inspection Up Button	Open Door Button (only if inspection not active)	ODB
	DRI	Inspection Down Button	Door Quick Closing Button (Active only in Collective operation). (only if inspection not active)	CDB
	VIC	Activates VIP Call Operation	In AUTO operation VIC activates VIP Call In INSPECTION (input ISQ off): bypass safety serie input (EN81-20)	BYI
	ATP	Generic input	Photocell and safety edge contact. Side 1	PE1
M6			FC - Full Car (load \approx maximum capacity) in Collective operation (only in AUTO operation)	FCI
	EKF	Fire-Fighters Operation EN81-72 Key Switch	EC - Occupied Car (load > 1%) in Automatic Push Button operation (only in AUTO operation)	ECI

For this configuration it is possible to use VIP Call and activate Fire-Fighter Operation EN81-72.

OUTPUTS

Connector	OUT	Old function	New function	New function acronym
M4	D0	Floor call	Test Bypass output	BPT
	D1	Floor call	ONLY FOR FULL COLLECTIVE OR HOMELIFT: Bypass active output	BYO
M3	U5	Floor call	ONLY FOR DOWN COLLECTIVE OR APB: Bypass active output	BYO
M7	OS	Programmable outputs	Display control 0	CBO
	EC		Display control 1	CB1
	LEV		Display control 2	CB2
	EME		Bypass Active output signal (EN81-20)	OBY
	LS	Low Speed Control	Acoustic signal of car incoming - GONG	GNG
	MS	Medium Speed Control	Door Open Command Side 1	DO
	HS	High Speed Control	Door Close Command Side 1	DC
	DN	Down Control	Direction Down Signal (APB operation), Next Leaving Down Signal (Collective operation)	NDS
	UP	Up Control	Direction Up Signal (APB operation), Next Leaving Up Signal (Collective operation)	NUS

In this configuration there are no programmable outputs.

7.2 - Drive with parallel commands

In this configuration function F04: Drive Type is set as "VVVF TKK" or "VVVF STD", the drive is controlled with ELETOUCH outputs on connector M7. The maximum possible number of stops is limited because some call signal outputs (U6, U7, D6 and D7) change function, following tables show possible configurations:

APB Max 6 stops		
$\begin{gathered} \text { M3 } \\ \text { ELETOUCH } \end{gathered}$	U0	K+C/L 00
	U1	K+C/L 01
	U2	K+C/L 02
	U3	K+C/L 03
	U4	K+C/L 04
	U5	K+C/L 05
	U6	X
	U7	X
$\begin{gathered} \text { M4 } \\ \text { ELETOUCH } \end{gathered}$	D0	LP 00
	D1	LP 01
	D2	LP 02
	D3	LP 03
	D4	LP 04
	D5	LP 05
	D6	X
	D7	X

Homelift Max 4 stops		
$\begin{gathered} \text { M3 } \\ \text { ELETOUCH } \end{gathered}$	U0	K/L 00
	U1	K/L 01
	U2	K/L 02
	U3	K/L 03
	U4	C/L 00
	U5	C/L 01
	U6	X
	U7	X
M4 ELETOUCH	D0	C/L 02
	D1	C/L 03
	D2	LP 00
	D3	LP 01
	D4	LP 02
	D5	LP 03
	D6	X
	D7	X

Down Collective Max 6 stops		
$\begin{gathered} \text { M3 } \\ \text { ELETOUCH } \end{gathered}$	U0	K/L 00
	U1	K/L 01
	U2	K/L 02
	U3	K/L 03
	U4	K/L 04
	U5	K/L 05
	U6	X
	U7	X
$\begin{gathered} \text { M4 } \\ \text { ELETOUCH } \end{gathered}$	D0	C/L 00
	D1	C/L 01
	D2	C/L 02
	D3	C/L 03
	D4	C/L 04
	D5	C/L 05
	D6	X
	D7	X

Full Collective Max 4 stops		
$\begin{gathered} \text { M3 } \\ \text { ELETOUCH } \end{gathered}$	U0	U/L 00
	U1	U/L 01
	U2	U/L 02
	U3	D/L 01
	U4	D/L 02
	U5	D/L 03
	U6	X
	U7	X
$\begin{gathered} \text { M4 } \\ \text { ELETOUCH } \end{gathered}$	D0	X
	D1	X
	D2	K/L 00
	D3	K/L 01
	D4	K/L 02
	D5	K/L 03
	D6	X
	D7	X

$C / L n$	Landing calls
$K / L n$	Car calls
$K+C / L n$	Landing and Car calls in APB operation
$D / L n$	Down calls in Full Collective operation
$U / L n$	Up calls in Full Collective operation
$L P n$	Car position (1 signal for each floor)

I/Os assume following functions:
INPUTS

Connector	IN	Old function	New function	New function acronym
M5	URI	Inspection Up Button	Open Door Button (only if inspection not active)	ODB
	DRI	Inspection Down Button	Door Quick Closing Button (Active only in Collective operation). (only if inspection not active)	CDB
	VIC	Activates VIP Call Operation	Open Door Limit side 1	DOL1
	ATP	Generic Input	Photocell and safety edge contact. Side 1	PE1
M6	EKF	Fire-Fighters Operation EN81-72 Key Switch	FC - Full Car (load \approx maximum capacity) in Collective operation EC - Occupied Car (load > 1%) in Automatic Push Button operation	FCl ECl

For this particular configuration it is not possible to use VIP Call and/or activate Fire-Fighter Operation EN81-72 (it is still possible to activate Fire-Fighter Operation EN81-73)

OUTPUTS

Connector	OUT	Old function	New function	$\begin{aligned} & \text { New } \\ & \text { function } \\ & \text { acronym } \end{aligned}$
M3	U6	Floor Call Signal	Door Open Command Side 1	DO
	U7	Floor Call Signal	Door Close Command Side 1	DC
M4	D6	Floor Call Signal	Direction Up Signal (APB operation), Next Leaving Up Signal (Collective operation)	NUS
	D7	Floor Call Signal	Direction Down Signal (APB operation), Next Leaving Down Signal (Collective operation)	NDS
M7	OS	Programmable outputs	Display control 0	CBO
	EC		Display control 1	CB1
	LEV		Display control 2	CB2
	EME		Display control 3	CB3
	MS	Medium Speed Control **	Acoustic signal of car incoming - GONG	GNG

** In this particular configuration Medium Speed, if needed, is controlled with LS+HS commands.

8 - EXAMPLES

In this chapter are given a few examples of diagrams
The connections of the safety chain and contactors must comply exactly the ones shown in the drawings, supply voltage can be changed, provided that it is compatible with the Electrical Specifications (see 9.4 Electrical Specification).
We have chosen to describe a three phase door motor 127Vac in Parallel Commands for Drive drawings and a door motor controlled by a VVVF drive with supply voltage 230Vac in Serial Commands for Drive drawings. Of course other solutions are possible.

- Parallel Car Connection - Standalone
8.1 - Parallel Commands for Asynchronous Drive
8.2 - Parallel Commands for Synchronous Drive (only drive connections)

8.3 - Serial CAN Commands for Synchronous Drive Contactorless

- Serial Car Connection
8.4 - Serial Car with parallel commands for Synchronous Drive

8.1 - Parallel Commands for Asynchronous Drive

NN SMS s.r.I.
The ELETOUCHDOWN COLLECTIVE CON TKL
ELEDTOUCHDOWN COLLECTIVE WITH TKL

NNㅡㄹ sMs s.r.I
ELETOUCHDOWN SOLLECTIVE CON TKL
ITH
SM-LIET.22000 TKL P SA 00

8.2 - Parallel Commands for Synchronous Drive (only drive connections)

8.3-Serial CAN Commands for Synchronous Drive Contactorless

For other connections see 8.1 - Parallel Commands for Asynchronous Drive

8.4 - Serial Car with parallel commands for Synchronous Drive

9 - APPENDIX

9.1- Warning messages

Message	Condition	Space for notes
ULS\&DLS Active	Both UP (ULS) and DOWN (DLS) limit switch active	ULS and DLS are N.C. contacts. Switch active means contact open.
ULS Active	Normal mode: Car not at top floor but ULS active. Inspection mode: URI pressed with ULS active.	Inct
DLS Active	Normal mode: Car not at bottom floor but DLS active. Inspection mode: DRI pressed with DLS active.	
ULS Not Active	Car at top floor but ULS not active	
DLS Not Active	Car at bottom floor but DLS not active	
Photocell Dark	Photocell dark from more than 20 seconds doesn't allow door close	
Door Open Button	Door open button doesn't allow door close	
Car Overload	Car overload doesn't allow car movement Contactors	RC input active without run command (UP or DOWN)
Door Open Limit	Door open limit open doesn't allow door open activation	
Car Doors	Door open or close failed	
Landing Locks	Door locking failed	
CAN Extens.	Missing CAN communication with expansion boards	
Ext. Trip 2	Input EA2 open	

9.2-Alarm Codes

E	ALARM	DESCRIPTION	CONSEQUENCES
E02	LANDING DOOR LOCKING FAILURE	Upon leaving, with the doors fully closed (input SC4 active), the input SC5 is not activated within 5 seconds.	

E06	RESET FAILURE	The car is unable to complete the reset operation.(arrival at the end floor and doors opening).	The system waits for a next call to try again the reset operation.
E07	CLOR DOAR CLOAL TO	The doors do not complete the closing $(S C 4=O N)$ within the time set in F23.	APB OPERATION The call is cancelled, the doors will reopen and the car is waiting for a new call. COLLECTIVE OPERATION The car and landing calls remain recorded and 5 attempts will be performed: if the problem persists, all calls are cancelled and the car remains in service, waiting for new calls. MULTIPLEX OPERATION The calls are not cancelled but are transferred to the other cars. If the timer intervenes in the CLOSING FOR PARKING or RESET procedure, 5 closing attempts will be performed, after which the car will park with the doors open.
E08	CAR DOORS FAIL TO OPEN	The doors do not complete the opening within the time set in F22.	Door motor control is disabled and the lift normally remains in service.
E09	HIGH SPEED MAXIMUM TRAVEL TIME TRIGGERED	The car is moving at high speed without reaching the next floor within the time set in F24.	Out of Service Manual Alarm Reset required
E10	LOW SPEED MAXIMUM TRAVEL TIME TRIGGERED	The car moves at low speed without reaching the floor within the time set $\begin{gathered} \text { in } \\ \text { F25. } \end{gathered}$	Out of Service Manual Alarm Reset required
E11	RELEVELING MAXIMUM TRAVEL TIME TRIGGERED	The car is in releveling phase without reaching the floor within the time set in F50.	Out of Service Manual Alarm Reset required
E12	MAIN CONTACTORS DEACTIVATION FAILURE	The RC input (RUN contactors) do not turn off within 2 seconds from deactivation command (deactivation of outputs UP / DN).	Leaving is prevented until $\mathbf{R C}$ is active.
E13	FLOOR COUNT ERROR	Car position indicates an end floor but no limit switch is active.	A call is made to the opposite end floor to reset the car position.
E14	OVERTRAVEL	Opening of overtravel switch (input SC2-1st section of safety chain)	Out of Service Manual Alarm Reset required
E15	MOTOR THERMISTORS PROTECTION TRIGGERED	Motor thermistors (connected to the input TH1 - TH2) have detected a rise in motor temperature up to the threshold of protection.	The car stops with the mode defined by F33, then the elevator is set to Out of Service Manual Alarm Reset required only if F12 is set to Manual
E16	EXTERNAL ALARM 1	The contact connected to the input EA1 is open (for example the alarm contact of the VVVF).	Out of Service Normal operation is automatically reset when the contact closes, performing the Reset operation.
E17	EXTERNAL ALARM 2	The contact connected to the input EA2 is open (for example, the contact of the oil thermostat).	The lift stops at the end of the current travel and a subsequent leaving is prevented. Normal operation is automatically reset when the contact closes.
E18	NO OPERATING VOLTAGE	There is no voltage at the input SC1 (upstream of the safety chain)	The lift stops and a subsequent leaving is prevented. The lift returns the service automatically when the voltage is restored.
E20	MAXIMUM TIME PHOTOCELL OR SAFETY EDGE INTERRUPTED	Contact connected to the photocell input is open for a time greater than 20 sec .	Leaving is prevented as long as such condition is active. Normal operation is automatically restored when the contact closes.
E21	RETURN TO BOTTOM FLOOR FAILED IN HYDRAULIC	If the car couldn't move to reach the bottom floor	Out of Service Manual Alarm Reset required

E22	DOOR THERMISTOR	The thermistors connected to TH3-TH4 on ELECB board have detected a very high temperature of the door motor. Alarm active only if function F59 EN81-20 is set to "YES"	The car stops in the mode defined by the function F33 and the lift is put out of service state. Manual alarm reset is required only if the function F12 is set to 'manual'.
E23	DOOR CONTACTS	The control of the door contacts has failed. Alarm active only if function F59 EN81-20 is set to "YES"	ELETOUCH tries to open the door for a second time. If the test fails again, the car will not move from the floor.
E24	PIT ACCESS	Pit access has occurred. AIF state is shown on the display. Alarm active only if function F59 EN81-20 is set to "YES"	In this condition, only pit inspection operation is permitted. For returning to normal service it is necessary to reset the alarm as described in paragraph 1.5.
E25	MICRO OPENING 1	The brake micro switch 1 does not open with the system move. Alarm active only if function F60 UCM Verify is set to "YES"	The lift is put out of service state at the end of the ride and the manual reset of the alarm is required
E26	MICRO CLOSING 1	The brake micro switch 1 does not close with system stop. Alarm active only if function F60 UCM Verify is set to "YES"	The lift is put out of service state at the end of the ride and the manual reset of the alarm is required
E27	MICRO OPENING 2	The brake micro switch 2 does not open with the system move. Alarm active only if function F60 UCM Verify is set to "YES"	The lift is put out of service state at the end of the ride and the manual reset of the alarm is required
E29	MICRO CLOSING 2	The brake micro switch 2 does not close with system stop. Alarm active only if function F60 UCM Verify is set to "YES"	The lift is put out of service state at the end of the ride and the manual reset of the alarm is required
E28	SAFETY CIRCUIT	Safety circuity does not work correctly. Alarm active only if function F59 EN81-20 is set to "YES"	The error can be seen and deleted in Diagnostics menu

- Out of service

In this condition the lift doesn't register any call and normally this state is not reversible in automatic.
If the lift is at door zone and the car has automatic doors, they are opened to make eventual people exit the car, then are closed again.
Eventual OS programmable output turns off in this condition.
The lift returns to normal operation after the alarm source is fixed and a Manual Alarm Reset is performed.

- Manual Alarm Reset

1. Pressing "Delete all" in Diagnostics menu (see 3.3.2 - Diagnostics).

In this case all the alarms are deleted from the Diagnostic menu.
2. Executing an Inspection operation (see 3.2.3-Inspection Operation).

At the end of the operation the lift is not in an Out of service condition anymore, but alarms in Diagnostics are preserved.

9.3 - Functions

F	FUNCTION	ALLOWED VALUES	DESCRIPTION	DEFAULT
F01	TOP FLOOR	$1 \div$ MAX FLOOR	Set this function to the maximum floor number, according to the operation mode and the number of expansion boards connected to the system.	11
F02	MAIN FLOOR	$0 \div \mathrm{FO} 1$	Set the system main floor: any floor below the main floor has a negative number. This parameter effects calls management in Down Collective operation; landing calls above the main floor are down calls, up calls otherwise.	0
F03	OPERATION MODE	- APB: - DOWN COLLECTIVE: - FULL COLLECTIVE: - HOME LIFT: - A.P.B SX	Automatic Push-Button Operation. Collective Operation, one landing button per floor. Collective Operation, two landing buttons per floor. Operating mode for platforms. Special APB operation (collective for Car calls)	DOWN
F04	DRIVE TYPE	- 1 SPEED - 2 SPEEDS - VVVF_STD - VVVF TKK - HYDRAULIC - VVVF TKL	Sets the lift drive type. This setting effects the contactor activation sequence and the general lift behaviour.	VVVF_STD
F05	DOOR TYPE	- MANUAL: - SEMIAUTOMATIC: AUTOMATIC:	manual car and landing doors automatic car doors and manual landing doors automatic car and landing doors	AUTOMATIC
F06	DOOR AT FLOOR	- OPEN DOORS - CLOSED DOORS - CLOSED AT F02	Set the behaviour of doors when the lift is at floor without registered calls. CLOSED AT F02 means: all doors normally open, except door at main floor F02, that is normally closed.	ClOSED DOORS
F07	CAR ENTRANCES	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	Set the number of car entrances. For two car entrances ELECB board and Serial Car Connection are mandatory.	1
F08	DOOR OPENING Floor: 0 1 \ldots F01	- SIDE 1: - SIDE 2: - SIMULTANEOUS: - SELECTIVE: - NONE:	Set the automatic doors behaviour for every floor (see 5.5.3 - Automatic Door Control) open side 1 door only. open side 2 door only. open both side 1 and 2 doors simultaneously. see 6.2 - Selective Door Opening. no doors opened (for manual doors).	SIDE 1
F09	INSPECTION SPEED	- LOW: - HIGH	(See 3.2.3 - Inspection Operation) Inspection speed is LS Inspection speed is HS; if F04 = VVVF Inspection speed is MS (M7)	HIGH
F10	FORCE DOOR CLOSING	$\begin{aligned} & \text { - NO: } \\ & \text { - YES: } \\ & \text { - CONSTANT: } \end{aligned}$	normal operation close command stays active while the lift is moving close command is always active, deactivated only during the opening	NO
F11	LAND CALL DELETE MODE	- SELECTIVE: - SIMULTANEOUS:	Valid only for Full Collective operation. arriving at floor, the call in the same direction as the car is cancelled. arriving at floor, both up and down calls are cancelled.	SELECTIVE
F12	THERMISTOR RESET MODE	- MANUAL: - AUTOMATIC:	normal operation is prevented until manual reset. normal operation is restored automatically 10 minutes after thermistors returning to normal status.	MANUAL
F13	AUTOMATIC RETURN FOR TRACTION DRIVES	- NO: - YES: - BELOW TO F14:	disabled enabled enabled for floors below return floor	NO
F14	AUTOMATIC RETURN FLOOR FOR TRACTION DRIVES	$0 \div$ F01	Return Floor for traction drives. Valid only if F13 = YES	0
F15	VIP CALL FLOOR	$0 \div$ F01	After the activation of the VIC input the car reaches this floor. (See 3.2.8 - VIP Call Operation)	1
F16	STOP DELAY TIME	$0.0 \div 2.0 \mathrm{sec}$.	Delay between the detection of the stop zone and the main motor contactor drop. Use this delay to achieve perfect stop position.	0.0 sec .
F17	CONTACTOR OPEN DELAY	$0.0 \div 2.0 \mathrm{sec}$.	Valid only for VVVF drive. If RC input does not work; at stop, sets the delay between the deactivation of speed and direction commands.	2.0 sec .

F	FUNCTION	ALLOWED VALUES	DESCRIPTION	DEFAULT
F18	EMERGENCY STOP DELAY	$0.0 \div 2.0 \mathrm{sec}$.	Works as F16 but in Emergency operation.	0.0 sec .
F19	CAM FALL DELAY	$0.0 \div 2.0 \mathrm{sec}$.	Delay between the opening of the contactors at stop and the opening of the retiring cam relay (CAM).	0.3 sec .
F20	DOOR OPENING DELAY	$0.0 \div 2.0 \mathrm{sec}$.	Delay between the opening of the contactors at stop and command for door opening. Use in lifts with automatic doors and retiring cam to ensure that the doors opening starts when the cam has already dropped.	0.5 sec .
F21	EMERGENCY MAXIMUM TIME	$1 \div 15 \mathrm{~min}$.	If Emergency operation does not finish within this time, it will be interrupted; to restore the operation disable the ROP input.	15 min .
F22	DOOR OPENING TIME	$1 \div 60 \mathrm{sec}$.	Protection of the door motor for opening; set to a time higher than the time normally required to fully open the doors, at least 1 second higher.	10 sec.
F23	DOOR CLOSING TIME	$1 \div 60 \mathrm{sec}$.	Protection of the door motor for closing; set to a time higher than the time normally required to fully close the doors, at least 2-3 second higher.	10 sec.
F24	HIGH SPEED TIME	$1 \div 45 \mathrm{sec}$.	During the run in high speed the time between floors is measured continuously by the board. If this time exceed the High Speed Time, alarm E09 is triggered.	45 sec.
F25	LOW SPEED TIME	$1 \div 45 \mathrm{sec}$.	During the run, the time the system is in low speed is always measured. If this time exceed the low speed time, alarm E10 is triggered.	45 sec.
F26	START DELAY TIME	$1 \div 60 \mathrm{sec}$.	Valid only for Collective operations. Defines the stop time of the car at floor with the doors open before leaving for another call.	2 sec.
F27	OCCUPIED TIME	$1 \div 60 \mathrm{sec}$.	In the APB operation this sets the delay for Occupied signal to turn off at floor, and also disabling landing calls. In Collective operation, defines the stop time before reversing direction to serve calls in the opposite direction. It must be greater than the time set in F26.	5 sec.
F28	AUTOMATIC RETURN DELAY	$1 \div 15 \mathrm{~min}$.	Valid for both traction and hydraulic lifts.	15 min .
F29	GONG TIME	$0.1 \div 3.0 \mathrm{sec}$.	It is the time in which the acoustic signal of car coming at floor is active, at the beginning of door opening or after the stop in the case of manual doors.	0.5 sec .
F30	CAR LIGHT TIME	$1 \div 255$ time units	Controls the Car Light output and sets how long this output stays active after the Occupied turns off. Time unit is set by F48, seconds by default.	10 sec.
F31	SELECTOR TYPE	- Magnetic switches - EPC	- ELETOUCH uses USS and DSS magnetic switches - EPC application (only for Drive TKL)	Magnetic switches
F32	MAGNETIC SWITCH TYPE	- NORMALLY OPEN - NORMALLY CLOSED	Defines USS and DSS switch type. For NC contacts, at floor level, USS and DSS ELETOUCH inputs are OFF. ULS and DLS limit switches are always NORM. CLOSED.	NORMALLY OPEN
F33	THERMISTOR STOP MODE	- END RUN - STOP AT ONCE	Defines the stop mode of the car following a Thermistor Alarm	END RUN
F34	RELEVELING STOP DELAY	$0.0 \div 2.0 \mathrm{sec}$.	Works as F16 but in Releveling operation.	0.2 sec .
F35	NEXT START DIRECTION MODE	- OFF during RUN: - ON during RUN:	Valid only for Collective operations. next direction signals are active from stop at floor until the next leaving. next direction signals are on also during the run, indicating the car direction	OFF during RUN
F36	EMERGENCY FLOOR	- NEXT FLOOR: - BOTTOM FLOOR:	(See 3.2.7 - Emergency Operation) Operation ends when car reaches USS and DSS Operation ends when car reaches USS, DSS and DLS.	$\begin{aligned} & \text { NEXT } \\ & \text { FLOOR } \end{aligned}$
F37	CONTACTOR CONTROL INPUT TYPE	- ACTIVE HIGH: - ACTIVE LOW:	Choose the control logic of the contactor control according to the availability of auxiliary contacts. H.connection to RC: parallel of main contact. NO contacts. L.connection to RC: series of main contactors NC contacts.	ACTIVE LOW

F	FUNCTION	ALLOWED VALUES	DESCRIPTION	DEFAULT
F38	CONTACTOR CONTROL MODE	- UP \& DOWN: - UP ONLY:	control is always done, both in up and down run. control is made only during up run: required for the hydraulic systems where there is no relay/contactor for down run, as the down valve is controlled downstream of the safety chain.	UP \& DOWN
F39	LIFT GROUP		Only valid in MULTIPLEX operation (see 6.1 - Multiplex Operation). Set the number of the lift systems connected.	1 Lift
F40	LIFT NUMBER	$0 \div 3$	Only valid in MULTIPLEX operation (see 6.1 - Multiplex Operation). Identifies the car within a group: $0=$ Lift 1, $1=$ Lift 2, $2=$ Lift 3, $3=$ Lift 4	0
F41	ZONE TIME OUT	$1 \div 255 \mathrm{sec}$.	Only valid in MULTIPLEX operation (see 6.1 - Multiplex Operation). Indicates the maximum time one or more calls can wait to be assigned to a car; after this time, this calls priority increases.	$44 \mathrm{sec} .$.
F42	ADVANCED DOOR OPENING	- NOT ACTIVE: - ON SLOWDOWN: - AT FLOOR:	advanced opening not enabled. opening is commanded at slowdown. An external safety circuit must provide the bypass of the door safety switches in the allowed door zone and enable the opening command at the suitable time the opening is commanded at when the car reaches the door zone. An external safety circuit must provide the bypass of door safety switches in the allowed door zone.	NOT ACTIVE
F43	MISSING FLOOR	- NONE - BOTTOM FLOOR - TOP FLOOR - OTHER CAR BOTTOM - OTHER CAR TOP	Only valid in MULTIPLEX operation (see 6.1 - Multiplex Operation). In the particular case in which one car cannot reach an end floor, served instead by the other car.	NONE
F44	FIRE-FIGHTER OPERATION MODE	- NONE - EN81-72 - EN81-73	See 3.2.9-Fire-Fighter Operation EN81-72 / EN81-73	NONE
F45	FIRE-FIGHTER FLOOR 1	$0 \div$ F01	See 3.2.9 - Fire-Fighter Operation EN81-72 / EN81-73 and the paragraph below	0
F46	FIRE-FIGHTER FLOOR 2	$0 \div$ F01	See 3.2.9 - Fire-Fighter Operation EN81-72 / EN81-73 and the paragraph below	0
F47	DOOR CLOSE IN PHASE 1	$\begin{aligned} & \text { - NO } \\ & \text { - YES } \end{aligned}$	See 3.2.9 - Fire-Fighter Operation EN81-72 / EN81-73	NO
F48	CAR LIGHT UNIT	- SECONDS - MINUTES	Sets the unit of measurement for F30. Sets to minutes for longer car light time.	SECONDS
F49	STAND-BY TIME	$0 \div 255$ min.	After this time, the system goes in stand-by mode. See 5.5.5 - Stand by for energy saving	0 min .
F50	RELEVELING TIME	$0 \div 255 \mathrm{sec}$.	If releveling operation time exceed this limit, an alarm E11 is triggered.	10 sec .
F51	EXTENSION	- NO: - CALLS ONLY: - CAR \& CALLS: - CAR \& SHAFT	See 4-BOARDS CONFIGURATIONS. Parallel Car Connection, ELETOUCH Standalone Parallel Car Connection, ELETOUCH + ELEXP Serial Car Connection, ELETOUCH + ELECB (+ ELEXP if needed) Serial Car and Serial Shaft Connection (ELETOUCH+ELECB+ELEFLOOR (+ ELEXP if needed))	NO
F52	DOOR CLOSE RETENTION DELAY	$0.0 \div 3.0 \mathrm{sec}$.	It's the time car door closing command holds ON, after the safety chain car door input SC4 is closed, in order to allow the complete mechanical closing. For manual doors it's the delay before to drive the retiring CAM once SC4 is closed	1.0 sec .
F53	REMOTE DISPLAY	$\begin{aligned} & \text { - NO: } \\ & -7 \text { SEG: } \\ & -7 \text { SEG } \times 2 \text { 2: } \\ & -1 \text { OUT * FLOOR: } \end{aligned}$	no ELEXP boards used as display driver one ELEXP works as 7 segments display driver one ELEXP work as display driver with decoding as in F55 one or more ELEXP work as 1 output per floor	NO
F54	MAIN FLOOR DISPLAY	$\begin{aligned} & -0: \\ & -1: \\ & -A, B, C \ldots: \end{aligned}$	Main floor is 0 , the floors below are negative Main floor is 1 and the floors below are negative (0 doesn't exist) Main floor is a letter, the floors below are negative	0

F	FUNCTION	ALLOWED VALUES	DESCRIPTION	DEFAULT
F55	DISPLAY DECODING	- BINARY - GRAY - SINGLE POLE - BINARY +1	Set the decoding for display outputs on ELETOUCH and ELECB boards. If F53 is "7Seg.x2" this is the decoding of ELEXP as remote display controller. BINARY is 0-1-2-3.. BINARI +1 is 1-2-3-5....	BINARY
F56	STAR DELTA TIMER	$0.0 \div 3.0 \mathrm{sec}$.	Set time for Star-delta hydraulic drives. See 5.5.5 - Star-delta start for Hydraulic drives.	0.0 sec .
F57	SOFT STOP TIMER	$0.0 \div 5.0 \mathrm{sec}$.	Set time for Soft stop function for hydraulic drives. If not used set to 0 . See 5.5.7 - Soft stop for Hydraulic drives.	0.0 sec .
F58	SHORT FLOOR	$\begin{aligned} & \therefore \text { NO } \\ & \therefore Y E S \end{aligned}$	This function is not used	NO
F59	EN81-20	$\begin{aligned} & \therefore \text { NO } \\ & \therefore Y E S \end{aligned}$	Enable EN81-20 functions See document "ELETOUCH Application EN81-20"	NO
F60	UCM Verify	$\begin{aligned} & \because N O \\ & \therefore Y E S \end{aligned}$	UCM Function brake switches monitoring, not certified See document "ELETOUCH Application EN81-20"	NO
F61	Stop DLS-ULS	$\begin{aligned} & \because N O \\ & \therefore Y E S \end{aligned}$	When in inspection, CAR stops on DLS or ULS limit switches	NO
F62	Total Shafts	$0 \div 2$	Number of shafts (only for Serial shaft Connection)	1

9.4-Electrical Specification

WARNING!	DO NOT use any power source with voltage different from specifications
	SCC terminal (M8 connector) MUST BE CONNECTED TO GROUND

9.4.1 - General specifications

SPECIFICATION		ELETOUCH	ELECB	ELEXP
Power Input	Voltage	18 Vac o $24 \mathrm{Vdc} \pm 10 \%$ Protected by replaceable 3A Fuse	$24 \mathrm{Vdc} \pm 10 \%$ Protected by replaceable 3A Fuse	$24 \mathrm{Vdc} \pm 10 \%$
	Terminals	18~, 18~ (M9)	0V, 24X (M1)	24X, OV (M12)
Power Output	Voltage	24 Vdc from internal rectifier	-	-
	Terminals	24V, OV (M9)	-	-
Generic Input	Voltage	24 Vdc (NPN)		
	Number	$\begin{gathered} 34 \\ (\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6) \end{gathered}$	(M3, M4, M5, M8, M9, M10, M12, M13, M14)	$\begin{gathered} 12 \\ \text { (M2) } \end{gathered}$
Thermistor Input	Terminals	TH1/TH2 (M6)	TH3/TH4 (M10) Th5/TH6 (M12)	-
Safety chain Input	Voltage	24V-110V AC DC	-	-
	Terminals	SCC SC1-SC5 (M8)		
Transistor Output	Number	$\stackrel{25}{25}$ Registered / Incoming signal, Generic Output	$\stackrel{25}{25}$ Registered / Incoming signal, Generic Output	-
	Terminals	U0-U7/D0-D7 (M3 e M4), Outputs (M7)	C0-C11 (M3, M4), Outputs (M6, M7, M10, M12)	
	Voltage	24 Vdc (NPN)		
	Maximum Current	160 mA , short circuit protected		-
	Max Current per group (12)	1A		
Relay Output Type 1	Number	0	Car Light	-
	Terminals	0	OB1/OB2 (M11)	
	Rating	Rated Load (8A $250 \mathrm{Vac} / 8 \mathrm{~A} 24 \mathrm{Vdc})$		
Relay Output Type 2	Number	0	4 Door controls Side 1, Reg Door controls Side 2 Display	12 Registered / Incoming signal or Display driver dry contact outputs
	Terminals	-	CD1 D01/DC1 (M10), CD2 DO2/DC2 (M12)	CC C00-C11
	Rating	Rated Load (0,5A 125Vac / 1A 30Vdc)		
CAN BUS 1	Connector	C1L/C1H/SH1 (M2 and M2A)	CAL/CAH/SH (M2 and M2A)	CAL/CAH/SH (M1 and M2)
CAN BUS 2	Connector	C2L/C2H/SH2 (M1)	-	-
RS485 1	Connector	CN2	-	-
RS485 2	Connector	CN3	-	-
USB Port	Connector	CN1	-	-

9.4.2 - Power Supply considerations

Power ELETOUCH board directly from the 18~ 18~ terminals, even for DC power supply.
Power ELECB board from $\mathbf{0 V}$ and $\mathbf{2 4 X}$ terminals, paying attention to the right polarity.
Use terminals $\mathbf{2 4 V}$ or 24 E only as an output to power external control panel logic.
As AC power source is recommended to use a dedicated secondary winding from a insulated transformer, independent from other AC voltages as, for example, safety chain operation voltage, and not referred to ground.
For Serial Car connection, it is not recommended to connect output power terminals of ELETOUCH and ELECB together as 0V or 24V.

9.4.3 - ELETOUCH, ELECB I/O

Each Generic Input, Safety Chain Input and Thermistor Input status is indicated by a green LED.
The load must be connected between the corresponding terminal and $\mathbf{2 4 V}$, as indicated in the example in Figure 12 for the OS signal.

Figure 12
As a general rule, it is recommended to always connect a protection device in parallel to relays coils, contactors coils, electromagnets, or other similar magnetic devices, to protect the board against surges:

- Diodes for DC voltage loads
- Varistors or RC Filters for AC voltage loads, or when it is important to quickly de-energize the equipment.

For contactors, a good advice is to use the RC filter recommended by manufacturer.
ELETOUCH Safety Chain Inputs and Motor Direction and Speed Outputs comply with Harmonized
Standard EN81, so insulation distances allow for example to connect motor contactors downstream the safety circuits.

9.4.4 - ELEXP I/O

ELEXP Board Outputs are all relay based Normally Open dry contact.
To use this board as a call expansion, connect OV to relay common CC, as shown in Figure 13; also in this case make sure that all SW1 switches are set to ON.

Figure 13

9.4.5 - LED Indicators

On ELEXP and ELECB boards there are two status LEDs which can be used for diagnostics:

RED LED	Blinking	Microprocessor is working
GREEN LED	Blinking	CAN Communication OK
	Off	CAN Communication ERROR

Also on ELETOUCH board there are two status LEDs:

RED LED	On	Microprocessor is working
GREEN LED	Blinking	CAN Communication OK
	On	CAN Communication ERROR
	Off	CAN Communication not required

9.5-Boards Layout

9.5.1 - ELETOUCH

Dimensions: $\quad 80 \times 300 \times 50 \mathrm{~mm}$

Generic I/Os

9.5.3 - ELEXP

Dimensions: $\quad 93 \times 120 \times 32 \mathrm{~mm}-4,5 \mathrm{~mm} \varnothing$

9.6-CAN Bus

9.6.1 - Connection to CAN1 Bus

ELETOUCH is a CAN Bus based system, so this communication bus requires that every device is connected in parallel through CAL and CAH terminals.

Figure 14
CAN Bus impedance should be around 60Ω, so every board has a Jumper that enables 120Ω in parallel, so only two jumper can be enabled in the system.
The boards have two CAN connectors (their terminals are in parallel to each other) to wire the boards of the system as a chain; enable resistance jumper always in the first and last board of the chain (the ones with one connector empty).
For Serial Car connection enable ELETOUCH (JP2 on B) and ELECB (JP1 on B) resistance, for Parallel Car connection enable ELETOUCH (JP2 on B) resistance and the last ELEXP of the chain (JP2 on B).
To ensure the best functionality, use of twisted pair cable is recommended, use of twisted pair shielded cable for CAN connection is better, especially if VVVF drives are present ; connect cable shield to SH terminals.

9.6.2 - Board Address

In CAN BUS systems every board has an unique address.
You can set a board address through some hardware switches:

- For ELEXP SW2 Dipswitch, JP3 and JP4 Jumpers
- For ELECB SW1 Dipswitch

ELEXP

In ELEXP boards the address is set according to this table:

SW2:2	SW2:1	JP3	Address
OFF	OFF	A	0
OFF	ON	A	1
ON	OFF	A	2
ON	ON	A	3
OFF	OFF	B	4
OFF	ON	B	5
ON	OFF	B	6
ON	ON	B	7

SW2:1

JP4 jumper defines ELEXP Board function.

JP4	Function
A	Normal call expansion
B	Display Driver (see 6.3 - ELEXP As Display Driver)

- ELECB

In ELECB Board SW1 dipswitch behaves as SW2 in ELEXP board; there is no JP3 though, so only address numbers from 0 to 3 are available for this board.

Multiplex Operation

In multiplex operation set every board dipswitch according to the lift group that it is assigned.
For ELETOUCH the lift group is set by F40 function (see 6.1 - Multiplex Operation).
For ELEXP is set by the last two switches of SW2, for ELECB is set by the last two switches of SW1.

sWn:3	sWn:4	Lift group
OFF	OFF	LIFT 1
ON	OFF	LIFT 2
OFF	ON	LIFT 3
ON	ON	LIFT 4

Set lift group to one if multiplex operation is not active.

9.6.3 - CAN2 Bus for drive TKL connection

To enable CAN2 resistance for drive TKL set ELETOUCH jumper JP1 on B then connect C2H and C2L to pin H and L in CAN connector drive TKL. Be sure that function F04: Drive type is set on "VVVF TKL".

9.6.4 - Troubleshooting

CAN Bus impedance can be measured with a multimeter from C1L terminal to $\mathbf{C 1 H}$ terminal and from $\mathbf{C 2 L}$ terminal to $\mathbf{C 2 H}$ terminal, with control panel disconnected from the power. Activate board jumpers until is ~ 60Ω as described in 9.6.2 - Connection to CAN1 Bus and 9.6.3-CAN2 Bus for drive TKL connection
In Serial Car connection configuration, if shielded cable is not available, is important that CAN signals travel as far as possible from power signals in the travelling cable, especially if any VVVF are present.
If the CAN communication is correct, in automatic operation on every connected board a green led should flash continuously.
If in any ELEXP or ELECB board the green led does not flash, check if all the board address are correct according to the configuration used (see 4-BOARDS CONFIGURATIONS and 9.6.2-Board Address).

PAGE INTENTIONALLY LEFT BLANK

CONFORMITY DECLARATION

Manifacturer: SMS s.r.I.
Address: Via Guido Rossa, 46/48/50 - Loc. Crespellano 40053 Valsamoggia BO

Product: MICROPROCESSOR BOARDS FOR ELEVATORS
Model or Type: ELETOUCH SYSTEM

The above product complies with the following EUROPEAN DIRECTIVES:

- 2014/33/UE LIFT
- 2014/30/UE ELECTROMAGNETIC COMPABILITY (EMC)

When installed as prescribed by the relative user manual.

To assess compliance, the following HARMONIZED STANDARDS were considered:

- EN 81.1:2010
- EN 81-20: 2020
- EN 81-41: 2011
- EN 81-72: 2020
- EN 12015: 2020

EN 81.2:2010
EN 81.21: 2018
EN 81-50: 2020
EN 81-73: 2020
EN 12016: 2013

Date: 08/04/2022

SMS S.R.L. (Gruppo SASSI HOLDING)

E-mail: sms@sms.bo.it •
Website: www.sms-lift.com • Tel: +39 051969037

Address: Via Guido Rossa 46-48-50 Loc. Crespellano 40053 Valsamoggia - Bologna - Italy

