

NCBM 01

1 Introduction

The control unit NCBM 01 can be used to realize the automatic monitoring systems of a built in redundancy devices , as requested by EN81-20 against uncontrolled movement.

For the hydraulic elevators:

NCBM01 allows to periodically monitor the functioning of the two down direction valves, connected in series and controlled in sync. It also permits the control the activation ad deactivation phase of the single additional valves.

For traction lift with brakes:

NCBM01 allows to monitor the brakes of gearless/geared machine controlling at each lift travel the safety micro switches mounted on the brake.

For traction lifts with uncontrolled movement device on the OSG(over speed governor):

NCBM01 allows to monitor the proper functioning of the blocking element (electromagnet) installed on the OSG

All the stopping element : down direction valves, electrical brakes and the OSG must be certified.

Main features:

- activation of an output relay, in case of failure of the test.
- Reset button to manually restore the normal operation of the device after alarm activation
- **HW redundant circuitry** of the micro-controller section that will activate the alarm relay in the case where the test has not been performed within 38 hours.
- internal clock to the time configuration of the test (e.g. during the night).
- Hour configuration using a button
- 6 LEDs to signalize alarms and operating status
- USB port and software application for configuring the unit allowing maximum flexibility to insert test and operational parameters.

During electrical cabinet assembly a fast parameter download is possible selecting the appropriate file

Revision 10 16/02/2016

PT1 PT2

FNO

2 Operation for hydraulic lift

The hydraulic lift can use 3 different uncontrolled movement systems:

- With Single blocking additional valve
- With double valves monitored.
- Bucher I-VALVE signal control

2.1 Electrical connection scheme for hydraulic lift

FIG. 1 Electrical scheme connection for hydraulic lift

2.2 System with single additional valve

Some manufacturers of valves, provide the possibility of using an additional valve block which must be opened first and closed after the main valve of descent. In this case, the valve does not work under pressure and not being considered in parallel to the main valve of descent does not require monitoring. The NCBM01 allows to select the activation sequence valve by setting the parameter "valve sequence" in the configuration window. Using the parameter "down valve opening delay" the advance opening time of the additional valve is configured, while the parameter "down valve closing delay" determines the delayed additional valve closing time.

The periodic test, in this configuration, is disabled. To activate the valves the doors have to be closed (presence of voltage on P01,P02, LED4 off). Needed connections: down, up, speed, power supply, outputs (CO1, O1,O2)

2.3 System with double valves monitored

In the case of double valve system monitored and controlled in parallel, the manufacturers prescribe the obligation to perform a test for periodic monitoring through the concept of "built in redundancy" introduced by the regulations EN81-20

In this case, the device NCBM01 performs test at the hour set in the parameter "test time" written during the configuration of the device. The test is repeated daily or hourly according to the parameter "test frequency" set The conditions that must occur to begin the test are:

É Scheduled time

É Contactors up, down, speed must be turned off, doors closed (voltage between P01-P02, LED4 off) for at least 30 seconds and lowest floor signal present (voltage present between PT1,PT2 LED 5 ON).

If the above conditions are met the test will start by opening the output O1 (valve V1 closed in testing) and maintaining the output O2 closed so that the valve V2 will remain open. The duration of the test valve is set via the parameter õ*test durationö* in the configuration user interface, after the test of the first valve, after 5 seconds it will proceed to the tests of the second valve in a similar manner (activate O1, O2 deactivated). In case a leveling command is activated (up command active without speed signal within 5 second), the test is repeated. If during the second attempt a leveling command is activated again the test failed. The alarm is signaled by the fault relay and the lighting of the LED indicators. After a switch on/off of the NCBM01 the alarm remain activated until the reset button is pusher for at least 5 seconds. If, during the test one of the following commands: *door open* or *down* or *up* followed by the *speed* within 5s, the test is suspended.

If a frequency daily tests is set, the device has a time-out for the execution of the test of one hour. If the test is not performed within 1 hour an alarm is generated. If it is set the tests frequency of one hour, there is no time-out

The parameters for the handling of activation delay of the valves, during normal elevator operation, are configured using the masks "Valve sequence", "down valve closing delay", "down valve opening delay", as described in the previous paragraph.

2.4 Bucher I-VALVE signal control

FIG. 2 Electrical scheme connection for hydraulic lift

The configuration Bucher I-VALVE allows to control the timing of the SMA signal when the travel signal is changing the state. As indicated in the valve manual, the system detects the *error1* and *error2*:

Error 1 : when travel command goes from high level to low level, the SMA signal should change the state from 0.1s to 1s after the travel signal change, if the timing is not respected error1 has to be detected

Error 2 : when travel command goes from low to high level, the SMA signal should change the state within 0.1s after the travel signal change, if the timing is not respected error2 has to be detected

If the error is detected the Fault relay will change state according to the relay polarity selected in the SW configuration

- FNO, in case of alarm FNO, CF is closed
- FNC, in case of alarm FNC,CF is closed

The alarm will be maintained until a manual reset will be performed.

DNV.G

1.6.5.3 Monitoring of the Emergency stop DOWN valve - Error 2

FIG. 3 Bucher I-valve signals

2.5 Signalling Hydraulic mode

Using the function LED functionality of the user interface SW is possible select the led options.

NORMAL FUNCTIONALITY HYDRO						
	MONITOR / NOMONITOR		BUCHER I-VALVE			
LED	(OPZ1)	(OPZ2)				
LED1(GREEN)	Up(On/Off)	Valve V1	OFF			
LED2 (GREEN)	Down (On/Off)	Valve V2	OFF			
LED3 ((GREEN)	High speed (On/Off)	POWER OK	Blink if travel low / On if travel high			
LED4 (GREEN)	Doors (On/Off)	Doors (On/Off)	SMA signal, on if high			
LED5 (GREEN)	Lower floor (On/Off)	Lower floor (On/Off)	Time verification pending, On until SMA signal change			
			the state			
ALL (RED)	Alarm (Off)	Alarm (Off)	Alarm (Off)			

TAB. 1 Led Meaning in normal functionality monitor / nomonitor / I-Valve configuration

	TEST PE	NDING	TEST IN PROGRESS			
LED	(OPZ1)	(OPZ2)	(OPZ1)	(OPZ2)		
LED1	Up (On/Off)	Valve V1 (O1 out	Valve V1 (O1 out On/Off)	Valve V1 (O1 out On/Off)		
(Green)		On/Off)				
LED2	Down (On/Off)	Valve V2(O2 out	Valve V2(O2 out On/Off)	Valve V2(O2 out On/Off)		
(Green)		On/Off)				
LED3	Test pending (Led blink)	Test pending (Led	Test pending (Led blink)	Test pending (Led blink)		
(Green)		blink)				
LED4	Doors (On= open	Doors (On= open	Doors (On= open	Doors (On= open		
(Green)	Off=closed)	Off=closed)	Off=closed)	Off=closed)		
LED5	Lower floor (On=at floor	Lower floor (On=at	Test in progress (led blink)	Test in progress (led blink)		
(Green)	/Off =not at floor)	floor /Off =not at				
		floor)				
ALL (Red)	Alarm (Off)	Alarm (Off)	Alarm(Off)	Alarm (Off)		

TAB. 2 Led Meaning during test monitoring pending or in execution

ALARM	Severity	Restore	LED1	LED2	LED3	LED4	LED5	ALL	Relay fault
Monitoring fault valve1	Unit blocked	RESET	ON	OFF	OFF	OFF	OFF	ON	ON
		Button							
Monitoring fault valve12	Unit blocked	RESET	OFF	ON	OFF	OFF	OFF	ON	ON
		Button							
Time out test, test not done in time	Unit blocked	RESET	ON	ON	OFF	OFF	OFF	ON	ON
		Button							
Bucker-Ivalve (error 1)	Unit blocked	RESET	ON	OFF	Blink	х	х	ON	ON
		Button							
Bucker-Ivalve (error 2)	Unit blocked	RESET	OFF	ON	ON	х	х	ON	ON
		Button							

TAB.	3	Led	Med	aning	in	case	of	alarm
------	---	-----	-----	-------	----	------	----	-------

2.6 Activation of the valves during an upward travel (monitor / no monitor config.)

Using the configuration window "Opening Up Valve Timing", you can configure the opening of a single or both valves during upward elevator travel. The maximum opening time is configurable to 4s. Checking the box "always on", you can configure the continuous opening of the valves during an upward travel. If in the configuration menu the box V1, V2 and $\tilde{\alpha}always$ on $\ddot{\sigma}$ are selected together, the opening and closing of the valves are handled according to the parameter set in the menus $\tilde{o}Valve$ sequence \ddot{o} , $\tilde{o}down$ Opening Valve Delay \ddot{o} e $\tilde{o}Down$ Closing Valve Delay \ddot{o} .

3 Working principle for traction lift

In the case of traction lift, as elements to stop the elevator car can be used the electrical machine brake or the safety gear driven by the speed limiter by means of a coil.

3.1 Electrical connection scheme for traction lift

3.2 Operation as a monitoring system for electric brakes

If the elevator is equipped with electric certified brakes, it is possible monitoring them checking the safety microswitch on the brakes at each change of state (open / close). The NCBM controls at each lift travel the status of the microswitch and if an anomaly is detected triggers the alarm resettable via the manual button.

it s possible to monitor 2,3 or 4 safety switches, the configuration is selectable using the user interface SW. The device receives the brake command and after a configurable time (default 5 seconds) checks the status of the microswitch. If the status is not correct the fault signal will be generated and the LED will indicate the possible fault on the brake.

The microswitch can be:

- Normally closed (NC) check the opening of the contact when the brake is activated (coil not energized).
- Normally open (NO) check the opening of the contact when the brake is activated (coil not energized).

In this configuration (electric lift) it is possible to select the polarity of the fault output using configuration SW trough the parameter $\delta fault$ relay polarity:

- FNO, in case of alarm FNO, CF is closed
- FNC, in case of alarm FNC,CF is closed

LED	Brakes deactivated No Alarm	Brakes activated	Brakes deactivated with alarm	Brakes activated with alarm
LED1(GREEN)	OFF (Contact1)	OFF (Contact 1)	ON if contact 1 faulty	ON if contact 1 faulty
LED2 (GREEN)	OFF (Contact 2)	OFF (Contact 2)	ON if contact 2 faulty	ON if contact 2 faulty
LED3 (GREEN)	ON (POWER OK)	ON blink (brake activated)	ON blink (brake activated)	ON blink (brake activated)
LED4 (GREEN)	OFF (Contact 3)	OFF (Contact 3)	ON if contact 3 faulty	ON if contact 3 faulty
LED5 (GREEN)	OFF (Contact 4)	OFF (Contact 4)	ON if contact 4 faulty	ON if contact 4 faulty
ALL (RED)	Alarm (Off)	Alarm (Off)	ON	ON
			Unit blocked, relay fault but	ON, restore using the reset

3.3 Signalling traction lift

TAB. 4 Signalling for traction lift

4 Monitoring system for OSG blocking coils

4.1 Working principle as OSG monitoring

Where it is used the certified speed limiter as an element able to activate the overspeed governor in the event of uncontrolled movement, it involves the use of an electromagnet which pushes a pivot to lock the wheel of the mechanical limiter.

The OSG is equipped with a sensor (usually mechanical microswitch or inductive) that allows to detect the position of the locking pivot activated by the electromagnet coil. This contact can be monitored by NCBM01.

Currently, there are two types of certified overspeed governor:

1. With coil released and activated and each arrival / departure from the floor

2. With coil always activated and released only in the event of uncontrolled movement

The type 1) can be monitored as an electric brake so please refer to section 3.1 The type 2) is described below.

DNV.GL

SO 900

4.2 Wiring diagrams for overspeed governors

FIG. 5 Connections scheme for monitoring OSG type1

FIG. 6 Connections scheme for monitoring OSG type2

4.3 Working principle in case of OSG actuated only in the event of uncontrolled movement

The NCBM01 unit allows to configure, using the SW interface, the time at which you want to run the test and its frequency (eg once a day). If the following conditions are true:

- elevator stopped for at least 30s
- elevator to the lowest floor
- closed doors
- test time
- Led configuration to start the test: LED2,5 on, LED3 flashing
- one of the following tests will start

Test option1:

- 1. the power supply contact of the electromagnet (O1) will be open
- 2. In a maximum time of 3 seconds the NCBM checks the microswitch status installed on the OSG (NC closed when OSG free to move, LED2 off)
- 3. if the contact remain closed the alarms will be activated.
- 4. If there were no alarms, the electromagnet is power supplied again (LED2 ON)
- 5. The contact will close again, if it remains open the alarm will be activated.

Test option2 (to be used for example in conjunction with the product Stem NCUMxx):

- 1. A test impulse of 300ms is sent on the O1 output
- 2. After a set time (default 3s) the status of the microswitch installed on the OSG is checked (NC closed when OSG free to move, LED2 OFF then ON)
- 3. If the test fails, the alarms will be activated

In both cases, the output O2 is activated about 10 seconds before the test run, to signal the imminent execution of the test. This information is useful to prevent a up/down command given at the same time of the O1opening, that may cause the operation of the safety gear.

During the waiting phase of the test (30s), the commands UP, down, door opening and lowest floor if activated will delay the test execution.

LED	Normal working	Test pending	Alarme activated
LED1(Green)	UP/down (On if active)	UP/down (On if active)	On
LED2	OSG contact (On if closed)	OSG contact (On if closed)	On
(Green)			
LED3	ON	Test pending (blink.)	Off
(Green)			
LED4	Doors (On if open/Off	Doors (On if open/Off	Off
(Green)	closed)	closed)	
LED5	Lowest floor (On at floor)	Lowest floor (On at floor)	Off
(Green)			
ALL (RED)	Alarm (Off)	Alarm (Off)	Alarm (On)
			Unit blocked, relay fault ON, restore using the reset
			button

4.4 Signaling

TAB. 5 Signaling for OSG application

5 Generic alarm valid for all configurations

ALARM	Severity	Restore	LED1	LED2	LED3	LED4	LED5	ALL	Relay fault
Battery	No Block	Automatic	OFF	OFF	OFF	OFF	ON	ON	OFF
RTCC Alarme	No Block	Automatic	OFF	OFF	ON	OFF	OFF	ON	OFF
Alarme memory write	No Block	Automatic	OFF	OFF	OFF	ON	OFF	ON	OFF
Allrm time out HW	Block	RESET Button	OFF	OFF	ON	OFF	OFF	ON	ON

TAB. 6 Generic alarm valid for all configurations

DNV.GI

6 HW redundancy circuitry

The NCBM is equipped with a redundancy HW circuit that in case the test is not performed within a 38-hour generates an alarm. The reset is possible only by pressing the reset button.

Each time the monitoring test is performed, the internal counter is reset by the change of status of the outputs O1-O2 and subsequent activation of the V1-V2 (to be connected in any application hydraulic, electrical and OSG)

7 Internal clock management

The device has an internal clock that thanks to the battery, continues to operate even in the absence of main power supply. Clock adjustment can be accomplished using the SW interface or by using the buttons on the NCBM unit. Pressing the TIME button for 5 seconds, the current time is displayed by blinks of the led3: every flash corresponds to one hour.

Pressing the time and reset button for about 3 seconds allows to enter in configuration mode: the LED1 will light and every time you press the button $\tilde{o}time\ddot{o}$ you will add 1 hour (example: if I need to set the 10 o clock, we must press $\tilde{o}TIME\ddot{o}$ 10 times). LED4 will flash each time you press the button.

8 Battery and operation in case of power failure

In case of power failure the NCBM01 keeps in operation only internal clock. After the return of the supply voltage, the control unit restores its normal operation within 1 minute.

The customer can select to use external 12V battery connected to the inputs A3-A4 or to use an internal battery inserted on the front side. The internal battery should be type CR2032 220mAh the õ+ö polarity toward the upper part of the device (tampo-print side). To avoid unexpected behavior when replacing the battery, it is suggested to insert it when the control unit is on. The battery is used only to keep the clock updated, in case of traction lift configuration or hydraulic without monitor it can be not used

9 START UP AND E PERIODIC INSPECTION

9.1 HYDRAULIC LIFT WITH MONITORING

- 1. Set through the user interface SW related parameters
- 2. Do some test runs up and down checking through the LEDs 1 to Led5 (Option 1 and Option 2) that the received signals from the system are correct and the LED FAULT is not activated.
- 3. Simulate the operation of re-leveling and checks by means of the LEDs1 to Led5 (Option 1 and Option 2) that the received signals from the system are correct and the LED FAULT is not activated.
- 4. **PERIODIC TEST SIMULATION SUCCESSFULLY PERFORMED**: With the system stopped at the bottom floor and with closed doors, turn on the test input (T1 to GND, T2 to 24VAC/DC) by means of an external pushbuttons. The test monitoring will start opening one valve at a time. If the LED fault remain off, the test is considered passed
- 5. **PERIODIC TEST SIMULATION WITH NEGATIVE RESULT AT VALVE V1**: With the system stopped at the bottom floor and with closed doors, turn on the test input (T1 to GND, T2 to 24VAC/DC) by means of an external pushbuttons. During the valve V1 test (V2 open) simulate a re-leveling, once the car position is OK wait for the restart of the test (Led3/led5 flashing) and simulate again a re-leveling. The test is considered passed if the control unit will activate the alarm LED and the fault relay will change state.
- 6. **PERIODIC TEST SIMULATION WITH NEGATIVE RESULT AT THE POWER ON:** after the alarm generated at the step 5) remove and reconnect the power supply make sure that the alarm remains active, then press the reset button for approximately 5 seconds to reset the faulty condition.
- 7. **PERIODIC TEST SIMULATION WITH NEGATIVE RESULT AT VALVE V2**: with the system stopped at the bottom floor and with closed doors, turn on the test input (T1 to GND, T2 to 24VAC/DC) by means of an external pushbuttons. During the valve V2 test (V1 open) simulate a re-leveling. Once the car position is OK, wait for the restart of the test (Led3/led5 flashing) and simulate again a re-leveling. The test is considered passed if the control unit will activate the alarm LED and the fault relay will change state.
- 8. Do again the point 6
- 9. Checks the time and eventually set it to the correct value.

- 1. Set through the user interface SW related parameters
- 2. Do some test runs up and down checking through the LEDs that received signals from the system are correct and the LED ALL and the relay FAULT are not activated.
- 3. **I-VALVE ERROR 1 DETECTED:** disconnect the SMA signal, travel command high (run elevator) than travel command low (stop the elevator), checks activation of the relay alarm and the correct led status
- 4. **I-VALVE ERROR 2 DETECTED:** connect the P01 to 24V, travel command high (run elevator), checks activation of the relay alarm and the correct led status

9.3 TRACTION LIFT USING BRAKES

- 1. Set through the user interface SW related parameters
- 2. Do some test runs up and down checking through the LEDs 1 to Led5 (Option 1 and Option 2) that the received signals from the system are correct and the LED FAULT is not activated.
- 3. **TEST SIMULATION WITH NEGATIVE RESULT:** simulate a non opening and a non-closing of the microswitch per each of them which is used.
- 4. **TEST SIMULATION WITH NEGATIVE RESULT AT THE POWER ON:** after the alarm generated at the step 3) switch on and off the power supply make sure that the alarm remains active, then press the reset button for approximately 5 seconds to reset the faulty condition.
- 5. Checks the time and eventually set it to the correct value.

9.4 TRACTION LIFT USING OSG

- 1. Set through the user interface SW related parameters
- 2. Do some test runs up and down checking through the LEDs 1 to Led5 (Option 1 and Option 2) that the received signals from the system are correct and the LED FAULT is not activated.

Type 1 OSG with electromagnet released each time the elevator stops at floor: Perform the test 8.2 from points 3 to 5

Type 2 OSG with electromagnet released only in case of undeteced movement

Option 1:

- 1. **TEST SIMULATION SUCCESSFULLY PERFORMED:** With the system stopped at the bottom floor and with closed doors, turn on the test input (T1 to GND, T2 to 24VAC/DC) by means of an external pushbuttons. After the pending time (30s), the test sequence will start, with the opening and subsequent closing output O1 in series with the electromagnet. If there is proper switching sequence on the OSG contact: opens when O1 opens, closes when O1 closes, the test ends successfully
- 2. TEST SIMULATION WITH NEGATIVE RESULT (contact failure to open):
 - a. Jumper output O1 so that the electromagnet remains always powered
 - b. With the system stopped at the bottom floor and with closed doors, turn on the test input (T1 to GND, T2 to 24VAC/DC) by means of an external pushbuttons. After the pending time (30s), the test sequence will start opening the output O1, but the microswitch will not change state because the electromagnet remain energized. The monitoring alarm will be activated

3. TEST SIMULATION WITH NEGATIVE RESULT AT THE POWER ON:

after the alarm generated at the step 2) switch on and off the power supply make sure that the alarm remains active, then press the reset button for approximately 5 seconds to reset the faulty condition.

4. TEST SIMULATION WITH NEGATIVE RESULT (contact failure to close):

- a. Disconnect the electromagnet from the output O1
- b. With the system stopped at the bottom floor and with closed doors, turn on the test input (T1 to GND, T2 to 24VAC/DC) by means of an external pushbuttons. After the pending time (30s), the test sequence will start opening the output O1. The NCBM will check the opening of the contact, but since there will be no its closure an alarm will be generated.
- 5. Repeat test 3
- 6. Checks the time and eventually set it to the correct value.

Option 2:

- 1. **TEST SIMULATION SUCCESSFULLY PERFORMED**: With the system stopped at the bottom floor and with closed doors, turn on the test input (T1 to GND, T2 to 24VAC/DC) by means of an external pushbuttons. After the pending time (30s), an impulse will be sent to the output O1. If the contact of the microswitch connected to the OSG will perform the correct sequence: opens when O1 opens, closes when O1 recloses, the test will end with positive result.
- 2. TEST SIMULATION WITH NEGATIVE RESULT (contact failure to open):
 - a. Jumper output O1 so that the electromagnet remains always powered
 - b. With the system stopped at the bottom floor and with closed doors, turn on the test input (T1 to GND, T2 to 24VAC/DC) by means of an external pushbuttons. After the pending time (30s), the test sequence will start sensing an impulse to the output O1. The microswitch will not change the state and an alarm will be generated.
- 3. **TEST SIMULATION WITH NEGATIVE RESULT AT THE POWER ON** after the alarm generated at the step 2) switch on and off the power supply make sure that the alarm remains active, then press the reset button for approximately 5 seconds to reset the faulty condition.

4. TEST SIMULATION WITH NEGATIVE RESULT (contact failure to close):

- a. Disconnect the electromagnet from the output O1
- b.
- c. With the system stopped at the bottom floor and with closed doors, turn on the test input (T1 to GND, T2 to 24VAC/DC) by means of an external pushbuttons. After the pending time (30s), the test sequence will start opening the output O1. The NCBM will check the opening of the contact, but since there will be no its closure an alarm will be generated.
- 5. Repeat test 3
- 6. Checks the time and eventually set it to the correct value.

9.5 PERIODICAL CHECKS

The tests described above are to be repeated during the maintenance visits and / or according to the indication provided by the manufacturers of the stopping elements (valves, brakes or limiter)

The frequency of the monitoring tests with regard to the valves and limiters type 2 are to be set in agreement with the indications prescribed by the valves or OSG manufacturer

10 Connectors

Name	Туре	Functions Hydro Monitor/nomonitor	Functions Hydro I-VALVE	Functions Electric	Functions OSG	Range [V] AC/DC	Max I [A]	Max Power [W]
A1-A2	Power supply	Power supply	Power supply	Power supply	Power supply	15 ÷30	0.1	
T1-T2	Optoisolated input	Immediate test			Immediate test	15÷30	0.01	
D1-D2	Optoisolated input	Down contactor	TRAVEL	Brake coil	Down contactor	24÷220	0.01	
A3-A4	Battery supply	Battery supply	Battery supply	Battery supply	Battery supply	12V	0.1	
V1-V2	Optoisolated input	Speed contactor	Not used	Microswitch1	OSG microswitch contact	24 ÷220	0.01	
P01-P02	Optoisolated input	Door contactor	SMA	Microswitch2	Door contactor	24 ÷220	0.01	
S01-S02	Optoisolated input	Up contactor	Not used	Microswitch3	Up contactor	24÷220	0.01	
PT1-PT2	Optoisolated input	Lowest floor contactor	Not used	Microswitch4	Lowest floor contactor	24÷220	0.01	
01	Relay out 1	V1 valve activation	Not used	Not used	Impulse test / Command power supply of the electromagnet	400VAC Switching	10	500
02	Relay out 2	V2 valve activation	Not used	Not used	Not used	400VAC Switching	10	500
СО	Common relay output	Common relay output	Not used	Not used	Common relay output	400VAC Switching	10	500
CF	Common relay fault	Common relay fault	Common relay fault	Common relay fault	Common relay fault	220VDC Switching	2	60
FNC	Relay fault normal closed	Relay fault normal closed	Relay fault normal closed	Relay fault normal closed	Relay fault normal closed	220VDC Switching	2	60
FNO	Relay fault normal open	Relay fault normal closed	Relay fault normal closed	Relay fault normal closed	Relay fault normal closed	220VDC Switching	2	60

TAB. 7 Connectors

11 Push buttons

Buttons combination	Functions
Reset	Alarm reset if pushed for at least 5 seconds
Time	If pushed for at least 5 seconds, the current time is visualized
Reset +Time	If pushed for at least 3 seconds, the clock configuration will start
Time (in configuration)	Each press of the button one hour is incremented

TAB. 8 Push buttons

12 General technical data

General technical data					
Power supply	15-30V AC/DC 3W				
Voltage inputs at the connectors: : PO, PT,V,D,S	$24 \div 220 \text{VAC/DC}$ if the inputs are connected in parallel with coils (eg. contactor coils or solenoid valves), we recommend the use varistors or tranzorb diodes to protect the inputs				
Maximum switching capability at alarm fault output	220VAC, 60W				
Maximum switching capability outputs O1-O2	400 VAC, 500W				
Working temperature	0 ó 70 °C				
USB port	MINI USB typeB 5 contacts.				
Internal Battery type	3V -220mAh 2032 type (diameter 20mm)				
Battery life in stand-by	20 days				
External Battery (Input A3-A4)	12V-7Ah Acid lead				
Mechanical Dimension	Box ME MAX22, IP 20, thickness 22,5mm Height 125mm, width 105mm				
Mechanical fixing system	DIN Type				
Storage temperature	$-40^{\circ}\text{C} + 120^{\circ}\text{C}$				
EMC compliance	EN12015:2005 ó EN12016:2005				
In accordance with	EN81-1:1998+A3:2009, EN81-2:1998+A3:2009, EN81-20:2014, EN81-50:2014				
Approvals	IMQ certificate N°847				

TAB. 9 General technical data

13 Order code

CODICE	DESCRIZIONE			
NCBM01	A3 monitoring unit			
1SBATTCR2032	Battery CR2032 (1 battery is included in the NCBM01)			
	Cable USB 2.0 Type A / Mini-B, length 2m			
1PUSB2TAMB2M	Connector: USB Type A Male / Type Mini-B Male			
	High/Full/Low Speed USB compatible			
TAB. 10 Order codes				

14 User interface Configuration

•

14.1 Driver USB installation

- Copy a folder on the C disk of your computer the directory STEM_NCBM_APP
- Before connecting the NCBM, check which communication ports are available on the PC
- Connect the NCBM to the PC via a USB cable, and turn it on. Windows will detect the new device

Check the presence of the new communication device

lura guidata consente di i

Se la periferica è dotata di un CD o un disco floppy di installazione, inserirlo nell'apposita unità

Installa il software automaticamente (scelta consigliata) Installa da un elenco o percorso specifico (per utenti espr continuare, scegliere Avanti.

<Indietro Avanti > Annula

CDC RS-232 Emulation Demo

egliere una delle seguenti opzioni

Installazione guidata nuovo

ffettuata una ricerca di software ter, nel CD di installazione dell'ha ws Update (con l'autorizzazione i

SI, solo in questa occasione SI, ora e ogni volta che viene

egliere Avanti per continuare

Consentire la connessione a Windows Update per la ricerca di software?

Avanti > Annulla

nardware

14.2 NCBM_COM_APP User interface

- Run the executable program NCBM_COM_APP in the folder STEM_NCBM_APP
- Select the correct communication port
- Perform a read cycle to check the current settings
- The mask will be configured according to the data read

14.2.1 Hydraulic user interface Monitor/ no Monitor mask

🔜 Configuration program for NCBM01 (v1.7)		
Serial port COM1 Serial port	Read	Administrator Mode Password
Date and Time 01/01/1900 Set Today Set 12.37.48 Set Now Set	Lift Type	Global Configuration Select File Download
	Options With monitoring Without monitoring	Save
Valve Sequence O First V1 then V2 O First V2 then V1		Active Error
Down Opening Valve Delay (ms) 0 Set		
Down Closing Valve Delay (ms)	Test Time 12:37:48 📚 Set	Firmware Version
Up Opening Valve Timing (ms) V1 V1 V2 Always on	Test Frequency One at day One at hour	
Option 1 Option 2	Test Duration (min - sec) min sec 0	Exit

Lift type= elevator type , Hydraulic

Options=with monitoring /without monitoring

Date and Time= date and time configuration

Test Time= test hour configuration

Test Frequency= test frequency: once a day or once per hour

Test Duration= test time duration

Valve sequence= setting phase shift valves, V1 open before and close after V2 or viceversa

Down closing valve delay= Advance opening time of the additional valve (to be set 0, in case of simultaneous opening)

Down closing valve delay= dalayed closing time of the additional (to be set 0, in case of simultaneous closing)

Up Opening Valve delay= valves opening time during the upward travel, if you select "always on" valves shall be open continually during the upward travel

Led Functionality=led option according to table 2

Active Error= errors active

Firmware version= firmware version

14.2.2 Hydraulic user interface Bucher i-VALVE

Serial port Scan COM3	Read	Administrator Mode	
Date and Time 01/01/1900	Lift Type	Global Configuration Select File Download	Senal Read Data
	Without monitoring Without monitoring Bucher I-Valve	Active Error	
		Firmware Version Oscillator calibration Descillator calibration Test Configuration End Set Set Set Set Set Set Set Set Set S	Serial Written Data
Fault Relay Polarity FINO FINC Set		Ext	Serial String Write

Lift type= elevator type , Hydraulic Date and Time= date and time configuration Active Error= errors active Firmware version= firmware version Fault Relay Polarity=set the fault relay polarity

14.2.3 Elettric /OSG1 user interface mask

Serial port Scan COM3	Read	Administrator Mode Password
Date and Time 01/01/1900 V Set Today Set 09:14:51 Set Now Set	Lift Type Hydraulic Electric / OSG type 1 OSG type 2 Options 1 NC contact 2 NC contact 3 NC contact 4 NC contact 2 NO contact 3 NO contact 4 NO contact 4 NO contact 4 NO contact 4 NO contact 4 NO contact 4 NO contact	Global Configuration Select File Download Save
Fault Relay Polarity	Test Duration (min - sec) min sec 0 + Set	Exit

Lift type= elevator type, electric Option= type and number of contact to be checked Date and Time= date and time configuration Test Duration= maximum time out to check the change state of the microswitch (max 5s) Active Error= errors active Firmware version= firmware version Fault Relay Polarity=set the fault relay polarity

14.2.4 OSG2 user interface mask

E Configuration program for NCBM01 (v1.7)		
Serial port Scan COM1 Serial port	Read	Administrator Mode Password
01/01/1900 Set Today Set 12.37.48 Set Now Set	Hype Hydraulic Electric / OSG type 1 Set OSG type 2 Options	Select File Download
	Option 1 Option 2	Active Error
	Test Time	Fimware Version
	12.37.48 Set Test Frequency One at day One at day Set	
	Test Duration (min - sec) min sec D I - D I	Exit

Lift type= elevator type, OSG type2

Option= option as indicated at the point 4.3 (option 2 to be used with the NCUM devices **Date and Time=** date and time configuration

Test Time= test hour configuration

Test Frequency= test frequency: once a day or once per hour

Test Time Duration= maximum time out to check the change state of the microswitch (max 5s) **Active Error**= errors active

Firmware version= firmware version

14.3 Global Configuration

Save = save a specific configuration in the written path Select File = load a previously saved configuration Download = configures the NCBM depending on the file loaded with the load command configuration